Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 2, Pages 349–363
DOI: https://doi.org/10.1070/SM1984v048n02ABEH002679
(Mi sm2135)
 

Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators

V. R. Kardashov
References:
Abstract: In this paper conditions are given for the spectrum in an eigenvalue problem of the form
λA(u)=B(u)
to be discrete, where A and B are operators that are odd-homogeneous of degree p1 (p2), acting from a reflexive Banach space into the dual. It is proved that the eigenvalues vary monotonically as A and B vary in the normed linear space of homogeneous operators of degree p1. Explicit formulas for the eigenvalues and functions are obtained for the case where A and B are the gradients of the norms in the spaces W1p[Ω0] and Lp[Ω0] (Ω0 is a parallelepiped in Em). Using these formulas the author obtains estimates for the eigenvalues in homogeneous and asymptotically homogeneous problems with variable coefficients in the space W1p[Ω], where Ω is an arbitrary bounded domain in Em.
Bibliography: 12 titles.
Received: 15.06.1981
Bibliographic databases:
UDC: 517.944
MSC: Primary 47H12, 47H15; Secondary 46E35, 55M30, 58B15, 58C40, 58E05
Language: English
Original paper language: Russian
Citation: V. R. Kardashov, “Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators”, Math. USSR-Sb., 48:2 (1984), 349–363
Citation in format AMSBIB
\Bibitem{Kar83}
\by V.~R.~Kardashov
\paper Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 349--363
\mathnet{http://mi.mathnet.ru/eng/sm2135}
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002679}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691983}
\zmath{https://zbmath.org/?q=an:0558.47044|0525.47044}
Linking options:
  • https://www.mathnet.ru/eng/sm2135
  • https://doi.org/10.1070/SM1984v048n02ABEH002679
  • https://www.mathnet.ru/eng/sm/v162/i3/p354
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:112
    English version PDF:35
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025