Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 2, Pages 349–363
DOI: https://doi.org/10.1070/SM1984v048n02ABEH002679
(Mi sm2135)
 

Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators

V. R. Kardashov
References:
Abstract: In this paper conditions are given for the spectrum in an eigenvalue problem of the form
$$\lambda A(u)=B(u)$$
to be discrete, where $A$ and $B$ are operators that are odd-homogeneous of degree $p-1$ $(p\geqslant2)$, acting from a reflexive Banach space into the dual. It is proved that the eigenvalues vary monotonically as $A$ and $B$ vary in the normed linear space of homogeneous operators of degree $p-1$. Explicit formulas for the eigenvalues and functions are obtained for the case where $A$ and $B$ are the gradients of the norms in the spaces $W_p^1[\Omega_0]$ and $L_p[\Omega_0]$ ($\Omega_0$ is a parallelepiped in $E^m$). Using these formulas the author obtains estimates for the eigenvalues in homogeneous and asymptotically homogeneous problems with variable coefficients in the space $\overset{\circ}{W_p^1}[\Omega]$, where $\Omega$ is an arbitrary bounded domain in $E^m$.
Bibliography: 12 titles.
Received: 15.06.1981
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1983, Volume 120(162), Number 3, Pages 354–370
Bibliographic databases:
UDC: 517.944
MSC: Primary 47H12, 47H15; Secondary 46E35, 55M30, 58B15, 58C40, 58E05
Language: English
Original paper language: Russian
Citation: V. R. Kardashov, “Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators”, Mat. Sb. (N.S.), 120(162):3 (1983), 354–370; Math. USSR-Sb., 48:2 (1984), 349–363
Citation in format AMSBIB
\Bibitem{Kar83}
\by V.~R.~Kardashov
\paper Structure of the spectrum and estimates for the eigenvalues of nonlinear homogeneous operators
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 120(162)
\issue 3
\pages 354--370
\mathnet{http://mi.mathnet.ru/sm2135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691983}
\zmath{https://zbmath.org/?q=an:0558.47044|0525.47044}
\transl
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 349--363
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002679}
Linking options:
  • https://www.mathnet.ru/eng/sm2135
  • https://doi.org/10.1070/SM1984v048n02ABEH002679
  • https://www.mathnet.ru/eng/sm/v162/i3/p354
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:295
    Russian version PDF:101
    English version PDF:26
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024