Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 2, Pages 307–326
DOI: https://doi.org/10.1070/SM1984v048n02ABEH002676
(Mi sm2132)
 

This article is cited in 22 scientific papers (total in 22 papers)

On degenerate nonlinear elliptic equations

N. V. Krylov
References:
Abstract: In this paper, the Dirichlet problem is studied for degenerate nonlinear Bellman equations. The main result is an estimate on the second mixed derivative of the solution on the boundary. In some cases this estimate yields estimates on all second derivatives both inside and on the boundary. As an example, the elementary Monge–Ampère equation is studied on a smooth strictly convex domain, and the existence of a solution smooth up to the boundary is established. The method of estimating the second mixed derivatives is based on the reduction to an estimate of the first derivatives of the solution of an auxiliary equation on a suitable closed manifold without boundary.
Bibliography: 16 titles.
Received: 22.02.1982
Bibliographic databases:
UDC: 517.9
MSC: Primary 35J65, 35J70; Secondary 60J60
Language: English
Original paper language: Russian
Citation: N. V. Krylov, “On degenerate nonlinear elliptic equations”, Math. USSR-Sb., 48:2 (1984), 307–326
Citation in format AMSBIB
\Bibitem{Kry83}
\by N.~V.~Krylov
\paper On degenerate nonlinear elliptic equations
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 307--326
\mathnet{http://mi.mathnet.ru/eng/sm2132}
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002676}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691980}
\zmath{https://zbmath.org/?q=an:0549.35049|0525.35038}
Linking options:
  • https://www.mathnet.ru/eng/sm2132
  • https://doi.org/10.1070/SM1984v048n02ABEH002676
  • https://www.mathnet.ru/eng/sm/v162/i3/p311
    Cycle of papers
    This publication is cited in the following 22 articles:
    1. Kods Hassine, “Existence and uniqueness of radial solutions for Hardy-Hénon equations involving k-Hessian operators”, CPAA, 21:9 (2022), 2965  crossref
    2. Mohamed Ben Chrouda, “Uniqueness and Liouville type results for radial solutions of some classes of k -Hessian equations”, Electron. J. Qual. Theory Differ. Equ., 2022, no. 62, 1  crossref
    3. Wenbo Li, Ricardo H. Nochetto, “Optimal Pointwise Error Estimates for Two-Scale Methods for the Monge–Ampère Equation”, SIAM J. Numer. Anal., 56:3 (2018), 1915  crossref
    4. Huang Q., “Sharp Regularity Results on Second Derivatives of Solutions to the Monge-Ampere Equation with Vmo Type Data”, Commun. Pure Appl. Math., 62:5 (2009), 677–705  crossref  mathscinet  zmath  isi
    5. Huang Q., “On the Mean Oscillation of the Hessian of Solutions to the Monge-Ampere Equation”, Adv. Math., 207:2 (2006), 599–616  crossref  mathscinet  zmath  isi
    6. Jiguang Bao, “The Dirichlet Problem for the Degenerate Elliptic Monge–Ampère Equation”, Journal of Mathematical Analysis and Applications, 238:1 (1999), 166  crossref  mathscinet  zmath
    7. Jiaxing Hong, “Dirichlet problems for general Monge-Ampere equations”, Math Z, 209:1 (1992), 289  crossref  mathscinet  zmath  isi
    8. Bloss M. Hoppe R., “Numerical Computation of the Value Function of Optimally Controlled Stochastic Switching Processes by Multi-Grid Techniques”, Numer. Funct. Anal. Optim., 10:3-4 (1989), 275–304  crossref  mathscinet  isi
    9. Kazuo Amano, “The Dirichlet problem for degenerate elliptic 2-dimensional Monge-Ampère equation”, BAZ, 37:3 (1988), 389  crossref  mathscinet  zmath
    10. Chen Y., “On Degenerate Monge-Ampere Equations in Convex Domains”, Lect. Notes Math., 1306 (1988), 61–68  crossref  mathscinet  zmath  isi
    11. N. V. Krylov, “On the first boundary value problem for nonlinear degenerate elliptic equations”, Math. USSR-Izv., 30:2 (1988), 217–244  mathnet  crossref  mathscinet  zmath
    12. Trudinger N., “Classical Boundary-Value-Problems for Monge-Ampere Type Equations”, Lect. Notes Math., 1192 (1986), 251–258  crossref  mathscinet  zmath  isi
    13. Bakelman I., “Generalized Elliptic Solutions of the Dirichlet Problem for N-Dimensional Monge-Ampere Equations”, 45, no. Part 1, 1986, 73–102  mathscinet  zmath  isi
    14. Trudinger N., “Graphs with Prescribed Curvature”, 45, no. Part 2, 1986, 461–466  mathscinet  zmath  isi
    15. L. Caffarelli, J. J. Kohn, L. Nirenberg, J. Spruck, “The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex monge-ampère, and uniformaly elliptic, equations”, Comm Pure Appl Math, 38:2 (1985), 209  crossref  mathscinet  zmath
    16. N. M. Ivochkina, “Solution of the Dirichlet problem for some equations of Monge–Aampére type”, Math. USSR-Sb., 56:2 (1987), 403–415  mathnet  crossref  mathscinet  zmath
    17. Lions P., “2 Remarks on Monge-Ampere Equations”, Ann. Mat. Pura Appl., 142 (1985), 263–275  crossref  mathscinet  zmath  isi
    18. Lions P., “Viscosity Solutions of Completely Nonlinear 2nd-Order Elliptic-Equations”, Asterisque, 1985, no. 132, 167–178  mathscinet  zmath  isi
    19. Kutev N., “On the Solvability of Monge-Ampere Type Equations”, 38, no. 10, 1985, 1283–1285  mathscinet  zmath  isi
    20. Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet Problem for Nonlinear 2nd-Order Elliptic-Equations .1. Monge-Ampere Equation”, Commun. Pure Appl. Math., 37:3 (1984), 369–402  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:557
    Russian version PDF:170
    English version PDF:32
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025