Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 1, Pages 193–200
DOI: https://doi.org/10.1070/SM1984v048n01ABEH002669
(Mi sm2118)
 

This article is cited in 9 scientific papers (total in 9 papers)

Analytic properties of the convolution of Siegel modular forms of genus $n$

V. L. Kalinin
References:
Abstract: It is shown that the Rankin convolution of two Siegel modular forms (of which at least one is a cusp form) extends meromorphically onto the whole complex plane. In the case of the full modular group of genus $n$, the singularities of the Rankin convolution are studied to within a finite number of points, and functional equations are obtained. By means of a Tauberian theorem, a limiting relation is obtained for the weighted sum of the squares of the Fourier coefficients of a cusp form.
Bibliography: 5 titles.
Received: 01.03.1982
Bibliographic databases:
UDC: 511.944
MSC: Primary 32N15, 10D20; Secondary 10D24, 10D12, 10H10
Language: English
Original paper language: Russian
Citation: V. L. Kalinin, “Analytic properties of the convolution of Siegel modular forms of genus $n$”, Math. USSR-Sb., 48:1 (1984), 193–200
Citation in format AMSBIB
\Bibitem{Kal83}
\by V.~L.~Kalinin
\paper Analytic properties of the convolution of Siegel modular forms of genus~$n$
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 1
\pages 193--200
\mathnet{http://mi.mathnet.ru/eng/sm2118}
\crossref{https://doi.org/10.1070/SM1984v048n01ABEH002669}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=687612}
\zmath{https://zbmath.org/?q=an:0542.10020|0524.10023}
Linking options:
  • https://www.mathnet.ru/eng/sm2118
  • https://doi.org/10.1070/SM1984v048n01ABEH002669
  • https://www.mathnet.ru/eng/sm/v162/i2/p200
  • This publication is cited in the following 9 articles:
    1. Hidenori Katsurada, Henry H. Kim, Takuya Yamauchi, “Period of the Ikeda type lift for the exceptional group of type $E_{7,3}$”, Math. Z., 302:1 (2022), 559  crossref
    2. Shuichi HAYASHIDA, “RANKIN-SELBERG METHOD FOR JACOBI FORMS OF INTEGRAL WEIGHT AND OF HALF-INTEGRAL WEIGHT ON SYMPLECTIC GROUPS”, Kyushu J. Math., 73:2 (2019), 391  crossref
    3. Hidenori Katsurada, Hisa-aki Kawamura, “Ikeda's conjecture on the period of the Duke–Imamoḡlu–Ikeda lift”, Proc. London Math. Soc, 2015, pdv011  crossref  mathscinet
    4. Cogdell J.W., Luo W., “The Bergman Kernel and MASS Equidistribution on the Siegel Modular Variety Sp(2N)(Z)/H-N”, Forum Math., 23:1 (2011), 141–159  crossref  mathscinet  zmath  isi
    5. F.L. Chiera, “On Petersson products of not necessarily cuspidal modular forms”, Journal of Number Theory, 122:1 (2007), 13  crossref  mathscinet  zmath
    6. S. Böcherer, F.L. Chiera, “Petersson Products of Singular and Almost Singular Theta Series”, manuscripta math, 115:3 (2004), 281  crossref  mathscinet  isi  elib
    7. Özlem Imamoğlu, Yves Martin, “On convolutions of Siegel modular forms”, Mathematische Nachrichten, 273:1 (2004), 75  crossref
    8. özlem Imamoglu, Yves Martiny, “On a Rankin-Selberg convolution of two variables for Siegel modular forms”, form, 15:4 (2003), 565  crossref  mathscinet
    9. W. Kohnen, “CertainL-series of Ranking-Selberg type associated to Siegel modular forms of degreeg”, Math. Ann., 288:1 (1990), 697  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:348
    Russian version PDF:102
    English version PDF:24
    References:51
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025