Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 1, Pages 159–172
DOI: https://doi.org/10.1070/SM1984v048n01ABEH002666
(Mi sm2113)
 

This article is cited in 1 scientific paper (total in 1 paper)

The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum

B. L. Budinas
References:
Abstract: A set is called a selector of an equivalence relation defined on all the real numbers if it intersects each equivalence class of this relation in a singleton set. The following proposition is called the selector principle: each analytic equivalence relation on the set of all real numbers has an $A_2$-selector. It is proved that the selector principle is not equivalent to the existence of an $A_2$ well ordering of the continuum. This answers a question posed by Burgess. Equivalence is understood in the sense of equivalence in the standard Zermelo–Fraenkel set theory with the axiom of choice.
Bibliography: 8 titles.
Received: 29.12.1980
Bibliographic databases:
UDC: 519.5
MSC: Primary 04A15, 04A99, 06A99, 54C65; Secondary 03E40, 03F65, 28A05
Language: English
Original paper language: Russian
Citation: B. L. Budinas, “The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum”, Math. USSR-Sb., 48:1 (1984), 159–172
Citation in format AMSBIB
\Bibitem{Bud83}
\by B.~L.~Budinas
\paper The selector principle for analytic equivalence relations does not imply the existence of an $A_2$ well ordering of the continuum
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 1
\pages 159--172
\mathnet{http://mi.mathnet.ru//eng/sm2113}
\crossref{https://doi.org/10.1070/SM1984v048n01ABEH002666}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=687609}
\zmath{https://zbmath.org/?q=an:0563.03031}
Linking options:
  • https://www.mathnet.ru/eng/sm2113
  • https://doi.org/10.1070/SM1984v048n01ABEH002666
  • https://www.mathnet.ru/eng/sm/v162/i2/p164
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:212
    Russian version PDF:70
    English version PDF:8
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024