Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 1, Pages 111–140
DOI: https://doi.org/10.1070/SM1984v048n01ABEH002664
(Mi sm2108)
 

This article is cited in 5 scientific papers (total in 5 papers)

On estimates for the orders of zeros of polynomials in analytic functions and their application to estimates for the relative transcendence measure of values of $E$-functions

Nguyen Tien Tai
References:
Abstract: This paper gives estimates for the orders of zeros of polynomials in a set of analytic functions satisfying a system of linear differential equations with coefficients in $\mathbf C(z)$, in the case when these functions are algebraically dependent over $\mathbf C(z)$. Using the Siegel–Shidlovskii method, these estimates are applied to obtain effective bounds from below for the relative transcendence measure of the values of $E$-functions in the case when the basic set of $E$-functions is algebraically dependent over $\mathbf C(z)$.
Bibliography: 20 titles.
Received: 23.04.1982
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1983, Volume 120(162), Number 1, Pages 112–142
Bibliographic databases:
UDC: 511.8
MSC: Primary 10F37; Secondary 10F35, 30C15, 30D15
Language: English
Original paper language: Russian
Citation: Nguyen Tien Tai, “On estimates for the orders of zeros of polynomials in analytic functions and their application to estimates for the relative transcendence measure of values of $E$-functions”, Math. USSR-Sb., 48:1 (1984), 111–140
Citation in format AMSBIB
\Bibitem{Ngu83}
\by Nguyen Tien Tai
\paper On estimates for the orders of zeros of polynomials in analytic functions and their application to estimates for the relative transcendence measure of values of $E$-functions
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 1
\pages 111--140
\mathnet{http://mi.mathnet.ru//eng/sm2108}
\crossref{https://doi.org/10.1070/SM1984v048n01ABEH002664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=687339}
\zmath{https://zbmath.org/?q=an:0542.10027|0516.10025}
Linking options:
  • https://www.mathnet.ru/eng/sm2108
  • https://doi.org/10.1070/SM1984v048n01ABEH002664
  • https://www.mathnet.ru/eng/sm/v162/i1/p112
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:492
    Russian version PDF:92
    English version PDF:26
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024