Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 1, Pages 111–140
DOI: https://doi.org/10.1070/SM1984v048n01ABEH002664
(Mi sm2108)
 

This article is cited in 5 scientific papers (total in 5 papers)

On estimates for the orders of zeros of polynomials in analytic functions and their application to estimates for the relative transcendence measure of values of E-functions

Nguyen Tien Tai
References:
Abstract: This paper gives estimates for the orders of zeros of polynomials in a set of analytic functions satisfying a system of linear differential equations with coefficients in C(z), in the case when these functions are algebraically dependent over C(z). Using the Siegel–Shidlovskii method, these estimates are applied to obtain effective bounds from below for the relative transcendence measure of the values of E-functions in the case when the basic set of E-functions is algebraically dependent over C(z).
Bibliography: 20 titles.
Received: 23.04.1982
Bibliographic databases:
UDC: 511.8
MSC: Primary 10F37; Secondary 10F35, 30C15, 30D15
Language: English
Original paper language: Russian
Citation: Nguyen Tien Tai, “On estimates for the orders of zeros of polynomials in analytic functions and their application to estimates for the relative transcendence measure of values of E-functions”, Math. USSR-Sb., 48:1 (1984), 111–140
Citation in format AMSBIB
\Bibitem{Ngu83}
\by Nguyen Tien Tai
\paper On estimates for the orders of zeros of polynomials in analytic functions and their application to estimates for the relative transcendence measure of values of $E$-functions
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 1
\pages 111--140
\mathnet{http://mi.mathnet.ru/eng/sm2108}
\crossref{https://doi.org/10.1070/SM1984v048n01ABEH002664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=687339}
\zmath{https://zbmath.org/?q=an:0542.10027|0516.10025}
Linking options:
  • https://www.mathnet.ru/eng/sm2108
  • https://doi.org/10.1070/SM1984v048n01ABEH002664
  • https://www.mathnet.ru/eng/sm/v162/i1/p112
  • This publication is cited in the following 5 articles:
    1. Zorin E., “Multiplicity Estimates For Algebraically Dependent Analytic Functions”, Proc. London Math. Soc., 108:4 (2014), 989–1029  crossref  mathscinet  zmath  isi
    2. A. P. Dolgalev, “Estimates for the Orders of Zeros of Polynomials in Some Analytic Functions”, Math. Notes, 84:2 (2008), 184–196  mathnet  crossref  crossref  mathscinet  isi  elib
    3. W. V. Zudilin, “On rational approximations of values of a certain class of entire functions”, Sb. Math., 186:4 (1995), 555–590  mathnet  crossref  mathscinet  zmath  isi
    4. Zhukov A., “On Effective Estimation of Zero Order for a Polynomial Over a Set of Functions Satisfying a Linear-Differential Equations System”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1991, no. 1, 79–82  mathscinet  zmath  isi
    5. W. Dale Brownawell, “Effectivity in independence measures for values of E-functions”, J Austral Math Soc, 39:2 (1985), 227  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:544
    Russian version PDF:98
    English version PDF:51
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025