Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 53, Issue 1, Pages 183–201
DOI: https://doi.org/10.1070/SM1986v053n01ABEH002916
(Mi sm2078)
 

This article is cited in 11 scientific papers (total in 11 papers)

On separation of singularities of meromorphic functions

V. I. Danchenko
References:
Abstract: Let $E$ be an arbitrary bounded proper continuum on $\overline{\mathbf C}$, $\lambda$ a finite collection of pairwise distinct domains that are components of $\overline{\mathbf C}\setminus E$, $f$ a function meromorphic in each domain $G\in\lambda$ and continuous in some neighborhood of $E$, $f_\lambda$ the sum of the principal parts of the Laurent expansions of $f$ with respect to its poles in the union of the domains in $\lambda$, and $n_\lambda$ the degree of the rational function $f_\lambda$. If all the domains $G\in\lambda$ are bounded, then $\|f_\lambda\|_{C(E)}\leqslant\mathrm{const}\cdot n_\lambda\|f\|_{C(E)}$. If $E$ is a rectifiable curve $\Gamma$, then the total variation $\operatorname{Var}(f_\lambda,\Gamma)=\int_\Gamma|f_\lambda'(\zeta)|\cdot|d\zeta|$ of $f_\lambda$ along $\Gamma$ satisfies $\operatorname{Var}(f_\lambda,\Gamma)\leqslant\mathrm{const}\cdot n_\lambda\ln^3(en_\lambda)\|f\|_{C(\Gamma)}V(\Gamma)$, where $V(\Gamma)$ is the supremum of the set $\{\operatorname{Var}(r,\Gamma)\}$ of total variations along $\Gamma$ of all the partial fractions $r(z)=a/(bz+c)$ with $\|r\|_{C(\Gamma)}=1$.
Bibliography: 11 titles.
Received: 19.09.1983
Bibliographic databases:
UDC: 517.53
MSC: 30A10, 30C99, 30D30
Language: English
Original paper language: Russian
Citation: V. I. Danchenko, “On separation of singularities of meromorphic functions”, Math. USSR-Sb., 53:1 (1986), 183–201
Citation in format AMSBIB
\Bibitem{Dan84}
\by V.~I.~Danchenko
\paper On separation of singularities of meromorphic functions
\jour Math. USSR-Sb.
\yr 1986
\vol 53
\issue 1
\pages 183--201
\mathnet{http://mi.mathnet.ru//eng/sm2078}
\crossref{https://doi.org/10.1070/SM1986v053n01ABEH002916}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=764477}
\zmath{https://zbmath.org/?q=an:0611.30032}
Linking options:
  • https://www.mathnet.ru/eng/sm2078
  • https://doi.org/10.1070/SM1986v053n01ABEH002916
  • https://www.mathnet.ru/eng/sm/v167/i2/p181
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024