Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 52, Issue 2, Pages 285–299
DOI: https://doi.org/10.1070/SM1985v052n02ABEH002891
(Mi sm2053)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the convergence of Galerkin approximations to the solution of the Dirichlet problem for some general equations

G. G. Kazaryan, G. A. Karapetyan
References:
Abstract: The Dirichlet problem with null boundary values is considered for a quasilinear operator of divergence form
$$ Au=\sum_{\alpha\in\mathrm E}D^\alpha A_\alpha(x,D^{\gamma^1}u,\dots,D^{\gamma^N}u), $$
where $\mathrm E=\{\gamma^1,\dots,\gamma^N\}$ is a finite collection of multi-indices, and $x$ varies in a domain $\Omega$ when the operator $A$ is in general not elliptic.
Under certain restrictions on the growth of the coefficients $A_\alpha(x,\xi)$ as $|\xi|\to\infty$ and on the domain $\Omega$, it is proved that the Dirichlet problem for the equation $Au=f$ for arbitrary $f\in L_2(\Omega)$ has a weak solution in the class $H$ induced in a natural way by the operator $A$. In addition it is proved that a sequence of Galerkin solutions converges to this solution weakly in $H$.
Bibliography: 30 titles.
Received: 16.11.1981 and 16.12.1983
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1984, Volume 124(166), Number 3(7), Pages 291–306
Bibliographic databases:
UDC: 517.9
MSC: Primary 35A35, 65N30; Secondary 35J65, 35A05
Language: English
Original paper language: Russian
Citation: G. G. Kazaryan, G. A. Karapetyan, “On the convergence of Galerkin approximations to the solution of the Dirichlet problem for some general equations”, Mat. Sb. (N.S.), 124(166):3(7) (1984), 291–306; Math. USSR-Sb., 52:2 (1985), 285–299
Citation in format AMSBIB
\Bibitem{KazKar84}
\by G.~G.~Kazaryan, G.~A.~Karapetyan
\paper On the convergence of Galerkin approximations to the solution of the Dirichlet problem for some general equations
\jour Mat. Sb. (N.S.)
\yr 1984
\vol 124(166)
\issue 3(7)
\pages 291--306
\mathnet{http://mi.mathnet.ru/sm2053}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=752222}
\zmath{https://zbmath.org/?q=an:0578.65114|0554.65081}
\transl
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 2
\pages 285--299
\crossref{https://doi.org/10.1070/SM1985v052n02ABEH002891}
Linking options:
  • https://www.mathnet.ru/eng/sm2053
  • https://doi.org/10.1070/SM1985v052n02ABEH002891
  • https://www.mathnet.ru/eng/sm/v166/i3/p291
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:434
    Russian version PDF:122
    English version PDF:17
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024