Processing math: 100%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 51, Issue 2, Pages 419–427
DOI: https://doi.org/10.1070/SM1985v051n02ABEH002867
(Mi sm2029)
 

This article is cited in 133 scientific papers (total in 133 papers)

The tensor algebra of the identity representation as a module over the Lie superalgebras Gl(n,m) and Q(n)

A. N. Sergeev
References:
Abstract: Let T be the tensor algebra of the identity representation of the Lie superalgebras in the series Gl and Q. The method of Weyl is used to construct a correspondence between the irreducible representations (respectively, the irreducible projective representations) of the symmetric group and the irreducible Gl- (respectively, Q-) submodules of T. The properties of the representations are studied on the basis of this correspondence. A formula is given for the characters on the irreducible Q-submodules of T.
Bibliography: 8 titles.
Received: 22.04.1983
Bibliographic databases:
UDC: 512
MSC: Primary 17A70, 17B10; Secondary 15A72, 20C30
Language: English
Original paper language: Russian
Citation: A. N. Sergeev, “The tensor algebra of the identity representation as a module over the Lie superalgebras Gl(n,m) and Q(n)”, Math. USSR-Sb., 51:2 (1985), 419–427
Citation in format AMSBIB
\Bibitem{Ser84}
\by A.~N.~Sergeev
\paper The tensor algebra of the identity representation as a~module over the Lie superalgebras $\mathfrak Gl(n,m)$ and~$Q(n)$
\jour Math. USSR-Sb.
\yr 1985
\vol 51
\issue 2
\pages 419--427
\mathnet{http://mi.mathnet.ru/eng/sm2029}
\crossref{https://doi.org/10.1070/SM1985v051n02ABEH002867}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=735715}
\zmath{https://zbmath.org/?q=an:0573.17002}
Linking options:
  • https://www.mathnet.ru/eng/sm2029
  • https://doi.org/10.1070/SM1985v051n02ABEH002867
  • https://www.mathnet.ru/eng/sm/v165/i3/p422
  • This publication is cited in the following 133 articles:
    1. Yaolong Shen, “Quantum supersymmetric pairs and ıSchur duality of type AIII”, Journal of Algebra, 661 (2025), 853  crossref
    2. Santosha Pattanayak, Preena Samuel, “Graded picture invariants and polynomial invariants for mixed tensor superspaces”, Journal of Algebra, 661 (2025), 595  crossref
    3. Jianmin Chen, Zhenhua Li, Hongying Zhu, “The braid group action on quantum queer superalgebra”, Journal of Algebra, 666 (2025), 169  crossref
    4. Anton Alekseev, Florian Naef, Ján Pulmann, Pavol Ševera, “Batalin-Vilkovisky structures on moduli spaces of flat connections”, Advances in Mathematics, 443 (2024), 109580  crossref
    5. Zhixiang Wu, “Some graded Hopf-module pseudoalgebras”, Journal of Algebra, 641 (2024), 587  crossref
    6. A. P. Isaev, A. A. Provorov, “3-split Casimir operator of the sl(M|N) and osp(M|N) simple Lie superalgebras in the representation ad3 and the Vogel parameterization”, Theoret. and Math. Phys., 221:1 (2024), 1726–1743  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    7. Jie Du, Haixia Gu, Zhenhua Li, Jinkui Wan, “Some Multiplication Formulas in Queer q-Schur Superalgebras”, Transformation Groups, 2024  crossref
    8. E. N. Antonov, A. Yu. Orlov, “A new solvable two-matrix model and the BKP tau function”, Theoret. and Math. Phys., 217:3 (2023), 1807–1820  mathnet  crossref  crossref  mathscinet  adsnasa
    9. Deke Zhao, “Cyclotomic q-Schur superalgebras”, J. Algebra Appl., 22:10 (2023)  crossref
    10. Yaroslav Drachov, Aleksandr Zhabin, “Genus expansion of matrix models and expansion of BKP hierarchy”, Eur. Phys. J. C, 83:5 (2023)  crossref
    11. VALENTIN BUCIUMAS, HANKYUNG KO, “POLYNOMIAL FUNCTORS AND TWO-PARAMETER QUANTUM SYMMETRIC PAIRS”, Transformation Groups, 28:1 (2023), 107  crossref
    12. A. P. Isaev, A. A. Provorov, “Split Casimir operator and solutions of the Yang–Baxter equation for the osp(M|N) and s(M|N) Lie superalgebras, higher Casimir operators, and the Vogel parameters”, Theoret. and Math. Phys., 210:2 (2022), 224–260  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    13. Kang Lu, “A note on odd reflections of super Yangian and Bethe ansatz”, Lett Math Phys, 112:2 (2022)  crossref
    14. Haixia Gu, Zhenhua Li, Yanan Lin, “The integral Schur-Weyl-Sergeev duality”, Journal of Pure and Applied Algebra, 226:9 (2022), 107044  crossref
    15. Shun-Jen Cheng, Kevin Coulembier, “Representation Theory of a Semisimple Extension of the Takiff Superalgebra”, International Mathematics Research Notices, 2022:18 (2022), 14454  crossref
    16. A. Mironov, A. Morozov, A. Zhabin, “Spin Hurwitz theory and Miwa transform for the Schur Q-functions”, Physics Letters B, 829 (2022), 137131  crossref
    17. Dmitry Chernyak, Sébastien Leurent, Dmytro Volin, “Completeness of Wronskian Bethe Equations for Rational glm|n Spin Chains”, Commun. Math. Phys., 391:3 (2022), 969  crossref
    18. Serge Skryabin, “On the graded algebras associated with Hecke symmetries, II. The Hilbert series”, J Algebr Comb, 56:1 (2022), 169  crossref
    19. Jie Du, Yanan Lin, Zhongguo Zhou, “Quantum queer supergroups via υ-differential operators”, Journal of Algebra, 599 (2022), 48  crossref
    20. A. Yu. Orlov, “Notes about the KP/BKP correspondence”, Theoret. and Math. Phys., 208:3 (2021), 1207–1227  mathnet  crossref  crossref  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:2292
    Russian version PDF:548
    English version PDF:102
    References:130
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025