|
On the divergence of Lagrange interpolation processes on sets of the second category
Al. A. Privalov
Abstract:
If $\omega$ is a real nondecreasing semiadditive function, continuous on $[0;1]$, such that $\omega(0)=0$ and $\varlimsup_{n\to\infty}\omega\bigl(\frac1n\bigr)\ln n>0$, then for every matrix of interpolation knots on $[0;1]$ there are a function $f$, continuous on $[0;1]$, whose modulus of continuity $\omega(f,\delta)=O\{\omega(\delta)\}$, and a set $\mathscr E$ of second category on $[0;1]$ such that the Lagrange interpolation process for $f$ diverges everywhere on $\mathscr E$.
Bibliography: 10 titles.
Received: 23.01.1984
Citation:
Al. A. Privalov, “On the divergence of Lagrange interpolation processes on sets of the second category”, Math. USSR-Sb., 55:2 (1986), 511–528
Linking options:
https://www.mathnet.ru/eng/sm2012https://doi.org/10.1070/SM1986v055n02ABEH003018 https://www.mathnet.ru/eng/sm/v169/i4/p519
|
|