Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 55, Issue 2, Pages 511–528
DOI: https://doi.org/10.1070/SM1986v055n02ABEH003018
(Mi sm2012)
 

On the divergence of Lagrange interpolation processes on sets of the second category

Al. A. Privalov
References:
Abstract: If $\omega$ is a real nondecreasing semiadditive function, continuous on $[0;1]$, such that $\omega(0)=0$ and $\varlimsup_{n\to\infty}\omega\bigl(\frac1n\bigr)\ln n>0$, then for every matrix of interpolation knots on $[0;1]$ there are a function $f$, continuous on $[0;1]$, whose modulus of continuity $\omega(f,\delta)=O\{\omega(\delta)\}$, and a set $\mathscr E$ of second category on $[0;1]$ such that the Lagrange interpolation process for $f$ diverges everywhere on $\mathscr E$.
Bibliography: 10 titles.
Received: 23.01.1984
Bibliographic databases:
UDC: 517.51
MSC: 41A05
Language: English
Original paper language: Russian
Citation: Al. A. Privalov, “On the divergence of Lagrange interpolation processes on sets of the second category”, Math. USSR-Sb., 55:2 (1986), 511–528
Citation in format AMSBIB
\Bibitem{Pri85}
\by Al.~A.~Privalov
\paper On~the divergence of Lagrange interpolation processes on sets of the second category
\jour Math. USSR-Sb.
\yr 1986
\vol 55
\issue 2
\pages 511--528
\mathnet{http://mi.mathnet.ru//eng/sm2012}
\crossref{https://doi.org/10.1070/SM1986v055n02ABEH003018}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=806515}
\zmath{https://zbmath.org/?q=an:0649.41001|0581.41001}
Linking options:
  • https://www.mathnet.ru/eng/sm2012
  • https://doi.org/10.1070/SM1986v055n02ABEH003018
  • https://www.mathnet.ru/eng/sm/v169/i4/p519
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024