Abstract:
The following theorem is proved.
Theorem.Let G be the semidirect sum of a simple Lie algebra H and an Abelian algebra relative to representation μ. Then a complete involutive system of rational functions on G∗ is explicitly constructed in the following cases: a) {\itH=gl(2n) and μ=Λ2ρ;} b) {\itH=sl(2n) and μ=s2ρ;} c) {\itH=sp(2n) and μ=ρ+τ, where ρ is the minimal representation and τ is the one-dimensional trivial representation.}
Bibliography: 9 titles.
Citation:
T. A. Pevtsova, “The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type E×ρG”, Math. USSR-Sb., 51:1 (1985), 275–286
\Bibitem{Pev84}
\by T.~A.~Pevtsova
\paper The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\underset{\rho}\times G$
\jour Math. USSR-Sb.
\yr 1985
\vol 51
\issue 1
\pages 275--286
\mathnet{http://mi.mathnet.ru/eng/sm2005}
\crossref{https://doi.org/10.1070/SM1985v051n01ABEH002860}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=732391}
\zmath{https://zbmath.org/?q=an:0538.58013|0569.58011}
Linking options:
https://www.mathnet.ru/eng/sm2005
https://doi.org/10.1070/SM1985v051n01ABEH002860
https://www.mathnet.ru/eng/sm/v165/i2/p276
This publication is cited in the following 3 articles:
M. M. Zhdanova, “Completely integrable Hamiltonian systems on semidirect sums of Lie algebras”, Sb. Math., 200:5 (2009), 629–659
A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90
A. V. Bolsinov, “Involutory families of functions on dual spaces of Lie algebras of type G+φV”, Russian Math. Surveys, 42:6 (1987), 227–228