|
This article is cited in 3 scientific papers (total in 3 papers)
On embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes
V. I. Kolyada
Abstract:
Necessary and sufficient conditions are obtained for embedding the function classes $H_p^{\omega_1,\dots,\omega_\nu}$, with given majorants of partial $L_p$-moduli of continuity, in the space $L_q([0,1]^\nu)$ ($1\leqslant p<q<\infty$). In particular, for Lipschitz classes $H_p^{\delta^{\alpha_1},\dots,\delta^{\alpha_\nu}}$ ($0<\alpha_i\leqslant1$) a criterion is obtained for embedding in $L_q$ with limit exponent $q=\frac p{1-\overline\alpha p}$, where $\overline\alpha=\bigl(\frac1{\alpha_1}+\dots+\frac1{\alpha_\nu}\bigr)^{-1}$.
Bibliography: 13 titles.
Received: 27.02.1984
Citation:
V. I. Kolyada, “On embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes”, Math. USSR-Sb., 55:2 (1986), 351–381
Linking options:
https://www.mathnet.ru/eng/sm2001https://doi.org/10.1070/SM1986v055n02ABEH003009 https://www.mathnet.ru/eng/sm/v169/i3/p352
|
|