Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 2, Pages 195–226
DOI: https://doi.org/10.1070/SM1997v188n02ABEH000200
(Mi sm200)
 

This article is cited in 3 scientific papers (total in 4 papers)

The fundamental principle for invariant subspaces of analytic functions. I

I. F. Krasichkov-Ternovskii

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: Let $W$ be a differentiation-invariant subspace of the topological product $H=H(G_1)\times \dots \times H(G_q)$ of the spaces of analytic functions in domains $G_1,\dots ,G_q$ in $\mathbb C$, respectively. Under certain assumptions there exists a sequence of complex numbers $\{\lambda _i\}$, $i=1,2,\dots$, and projection operators $p_i\colon W \to W(\lambda _i)$ onto the root subspaces $W(\lambda _i)\subset W$ corresponding to the eigenvalues $\lambda _i$ of the differentiation operator. This enables one to associate with each element $f\in W$ the formal series $f\backsim \sum p_i(f)$. The fundamental principle is the phenomenon of the convergence of this series to the corresponding element $f$ for each $f$ in $W$. The existence of the projections $p_i$ depends on a particular property of the annihilator submodule of $W$: its stability with respect to division by binomials $z-\lambda$. Stability questions arising in establishing the fundamental principle are considered.
Received: 23.01.1996
Bibliographic databases:
UDC: 517.5
MSC: 46E10, 30B99
Language: English
Original paper language: Russian
Citation: I. F. Krasichkov-Ternovskii, “The fundamental principle for invariant subspaces of analytic functions. I”, Sb. Math., 188:2 (1997), 195–226
Citation in format AMSBIB
\Bibitem{Kra97}
\by I.~F.~Krasichkov-Ternovskii
\paper The fundamental principle for invariant subspaces of analytic functions.~I
\jour Sb. Math.
\yr 1997
\vol 188
\issue 2
\pages 195--226
\mathnet{http://mi.mathnet.ru//eng/sm200}
\crossref{https://doi.org/10.1070/SM1997v188n02ABEH000200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1453258}
\zmath{https://zbmath.org/?q=an:0903.46022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XE98900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031287034}
Linking options:
  • https://www.mathnet.ru/eng/sm200
  • https://doi.org/10.1070/SM1997v188n02ABEH000200
  • https://www.mathnet.ru/eng/sm/v188/i2/p25
    Cycle of papers
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:581
    Russian version PDF:216
    English version PDF:20
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024