Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 1, Pages 29–45
DOI: https://doi.org/10.1070/SM1995v186n01ABEH000002
(Mi sm2)
 

This article is cited in 29 scientific papers (total in 29 papers)

Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems

T. V. Girya, I. D. Chueshov

Kharkiv State University
References:
Abstract: We prove the existence of inertial manifolds for a semilinear dynamical system perturbed by additive ‘white noise’. This manifold is generated by a certain predictable stationary vector process $\Phi_t(\omega)$. We study properties of this process as well as the properties of the induced finite-dimensional stochastic system on the manifold (inertial form). The results obtained allow us to prove for the original stochastic system a theorem on stabilization of stationary solutions to a unique invariant measure. This measure is uniquely defined by the probability distribution of the process $\Phi_t(\omega)$ and the form of the invariant measure corresponding to the inertial form.
Received: 24.02.1994
Bibliographic databases:
UDC: 517.919
MSC: 60G10, 34D45
Language: English
Original paper language: Russian
Citation: T. V. Girya, I. D. Chueshov, “Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems”, Sb. Math., 186:1 (1995), 29–45
Citation in format AMSBIB
\Bibitem{GirChu95}
\by T.~V.~Girya, I.~D.~Chueshov
\paper Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems
\jour Sb. Math.
\yr 1995
\vol 186
\issue 1
\pages 29--45
\mathnet{http://mi.mathnet.ru//eng/sm2}
\crossref{https://doi.org/10.1070/SM1995v186n01ABEH000002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1641664}
\zmath{https://zbmath.org/?q=an:0851.60036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ91900002}
Linking options:
  • https://www.mathnet.ru/eng/sm2
  • https://doi.org/10.1070/SM1995v186n01ABEH000002
  • https://www.mathnet.ru/eng/sm/v186/i1/p29
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024