Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 1, Pages 29–45
DOI: https://doi.org/10.1070/SM1995v186n01ABEH000002
(Mi sm2)
 

This article is cited in 30 scientific papers (total in 30 papers)

Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems

T. V. Girya, I. D. Chueshov

Kharkiv State University
References:
Abstract: We prove the existence of inertial manifolds for a semilinear dynamical system perturbed by additive ‘white noise’. This manifold is generated by a certain predictable stationary vector process $\Phi_t(\omega)$. We study properties of this process as well as the properties of the induced finite-dimensional stochastic system on the manifold (inertial form). The results obtained allow us to prove for the original stochastic system a theorem on stabilization of stationary solutions to a unique invariant measure. This measure is uniquely defined by the probability distribution of the process $\Phi_t(\omega)$ and the form of the invariant measure corresponding to the inertial form.
Received: 24.02.1994
Bibliographic databases:
UDC: 517.919
MSC: 60G10, 34D45
Language: English
Original paper language: Russian
Citation: T. V. Girya, I. D. Chueshov, “Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems”, Sb. Math., 186:1 (1995), 29–45
Citation in format AMSBIB
\Bibitem{GirChu95}
\by T.~V.~Girya, I.~D.~Chueshov
\paper Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems
\jour Sb. Math.
\yr 1995
\vol 186
\issue 1
\pages 29--45
\mathnet{http://mi.mathnet.ru/eng/sm2}
\crossref{https://doi.org/10.1070/SM1995v186n01ABEH000002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1641664}
\zmath{https://zbmath.org/?q=an:0851.60036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ91900002}
Linking options:
  • https://www.mathnet.ru/eng/sm2
  • https://doi.org/10.1070/SM1995v186n01ABEH000002
  • https://www.mathnet.ru/eng/sm/v186/i1/p29
  • This publication is cited in the following 30 articles:
    1. Lin Shi, “Limiting behavior of invariant foliations for SPDEs in singularly perturbed spaces”, Journal of Differential Equations, 415 (2025), 541  crossref
    2. Junyilang Zhao, Jun Shen, “Probabilistic Limiting Behavior of Stochastic Inertial Manifolds for a Class of SPDEs”, Bull. Malays. Math. Sci. Soc., 48:2 (2025)  crossref
    3. M. M. Freitas, C. A. Raposo, A. J. A. Ramos, J. Ferreira, L. G. R. Miranda, “Asymptotic limits and attractors for a laminated beam model”, Z. Angew. Math. Phys., 74:4 (2023)  crossref
    4. Juan Yang, Jiaxin Gong, Longyu Wu, Ji Shu, “Limiting behavior of center manifolds for stochastic evolutionary equations with delay in varying phase spaces”, Journal of Mathematical Physics, 64:1 (2023)  crossref
    5. Lin Shi, Linfeng Zhou, “C1,-convergence of center manifolds for stochastic PDEs driven by colored noise on thin domain”, Journal of Differential Equations, 310 (2022), 99  crossref
    6. Lin Shi, Dingshi Li, Kening Lu, “Limiting behavior of unstable manifolds for spdes in varying phase spaces”, DCDS-B, 26:12 (2021), 6311  crossref
    7. Jun Shen, Kening Lu, Weinian Zhang, “Smoothness of invariant manifolds and foliations for infinite dimensional random dynamical systems”, Sci. China Math., 63:9 (2020), 1877  crossref
    8. Igor Chueshov, Björn Schmalfuß, Applied Mathematical Sciences, 204, Synchronization in Infinite-Dimensional Deterministic and Stochastic Systems, 2020, 269  crossref
    9. Hakima Bessaih, María J. Garrido-Atienza, Verena Köpp, Björn Schmalfuß, Meihua Yang, “Synchronization of stochastic lattice equations”, Nonlinear Differ. Equ. Appl., 27:4 (2020)  crossref
    10. Lin Shi, “Smooth convergence of random center manifolds for SPDEs in varying phase spaces”, Journal of Differential Equations, 269:3 (2020), 1963  crossref
    11. B. Wang, Studies in Systems, Decision and Control, 30, Continuous and Distributed Systems II, 2015, 189  crossref
    12. Davit Martirosyan, “Exponential mixing for the white-forced damped nonlinear wave equation”, EECT, 3:4 (2014), 645  crossref  mathscinet  zmath
    13. Armen Shirikyan, Sergey Zelik, “Exponential attractors for random dynamical systems and applications”, Stoch PDE: Anal Comp, 2013  crossref  mathscinet
    14. Wang W., Roberts A.J., “Macroscopic Reduction for Stochastic Reaction-Diffusion Equations”, IMA J. Appl. Math., 78:6 (2013), 1237–1264  crossref  mathscinet  zmath  isi
    15. Li J., Lu K., Bates P., “Normally Hyperbolic Invariant Manifolds for Random Dynamical Systems: Part I - Persistence”, Trans. Am. Math. Soc., 365:11 (2013), 5933–5966  crossref  mathscinet  zmath  isi
    16. María J. Garrido-Atienza, Kening Lu, Björn Schmalfuß, “Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion”, Journal of Differential Equations, 248:7 (2010), 1637  crossref  mathscinet  zmath
    17. Igor Chueshov, Björn Schmalfuß, “Master-slave synchronization and invariant manifolds for coupled stochastic systems”, J. Math. Phys, 51:10 (2010), 102702  crossref  mathscinet  zmath
    18. Björn Schmalfuss, Klaus R. Schneider, “Invariant Manifolds for Random Dynamical Systems with Slow and Fast Variables”, J Dyn Diff Equat, 20:1 (2008), 133  crossref  mathscinet  zmath  isi
    19. KENING LU, BJÖRN SCHMALFUß, “INVARIANT FOLIATIONS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS”, Stoch. Dyn., 08:03 (2008), 505  crossref
    20. Kening Lu, Björn Schmalfuß, “Invariant manifolds for stochastic wave equations”, Journal of Differential Equations, 236:2 (2007), 460  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:594
    Russian version PDF:152
    English version PDF:24
    References:74
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025