|
This article is cited in 3 scientific papers (total in 3 papers)
$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
A. V. Khokhlov
Abstract:
This paper gives a description of the homotopy types of the spectra $k\langle n\rangle$ which represent bordism theories with singularities, and for which $\pi_*(k\langle n\rangle)=Z_{(p)}[t]$, $\dim t=2p^n-2$. The invariants of the Postnikov tower of the spectrum $k\langle n\rangle$ are higher operations $\widetilde Q_n^{(s)}$ where $\widetilde Q_n^{(0)}\in HZ_{(p)}*(HZ_{(p)})$ and the element $\widetilde Q_n^{(s+1)}$ is constructed from the relation $\widetilde Q_n^{(0)}\widetilde Q_n^{(s)}=0$. The order of the higher operation, i.e. the order of the corresponding element $\alpha_s$ in the cohomology of the stage $k^{s-1}\langle n\rangle$, is equal to $p^s$. Moreover, the question of the action of the higher operations $\widetilde Q_n^{(s)}$ on Thom classes of vector bundles and sphere bundles is solved, which gives a necessary and sufficient condition for orientability of vector bundles and sphere bundles in $k\langle n\rangle$-theory.
Bibliography: 10 titles.
Received: 22.02.1983
Citation:
A. V. Khokhlov, “$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles”, Math. USSR-Sb., 51:1 (1985), 255–266
Linking options:
https://www.mathnet.ru/eng/sm1997https://doi.org/10.1070/SM1985v051n01ABEH002858 https://www.mathnet.ru/eng/sm/v165/i2/p258
|
|