Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 51, Issue 1, Pages 255–266
DOI: https://doi.org/10.1070/SM1985v051n01ABEH002858
(Mi sm1997)
 

This article is cited in 3 scientific papers (total in 3 papers)

$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles

A. V. Khokhlov
References:
Abstract: This paper gives a description of the homotopy types of the spectra $k\langle n\rangle$ which represent bordism theories with singularities, and for which $\pi_*(k\langle n\rangle)=Z_{(p)}[t]$, $\dim t=2p^n-2$. The invariants of the Postnikov tower of the spectrum $k\langle n\rangle$ are higher operations $\widetilde Q_n^{(s)}$ where $\widetilde Q_n^{(0)}\in HZ_{(p)}*(HZ_{(p)})$ and the element $\widetilde Q_n^{(s+1)}$ is constructed from the relation $\widetilde Q_n^{(0)}\widetilde Q_n^{(s)}=0$. The order of the higher operation, i.e. the order of the corresponding element $\alpha_s$ in the cohomology of the stage $k^{s-1}\langle n\rangle$, is equal to $p^s$. Moreover, the question of the action of the higher operations $\widetilde Q_n^{(s)}$ on Thom classes of vector bundles and sphere bundles is solved, which gives a necessary and sufficient condition for orientability of vector bundles and sphere bundles in $k\langle n\rangle$-theory.
Bibliography: 10 titles.
Received: 22.02.1983
Bibliographic databases:
UDC: 515.142.425
MSC: Primary 55N20, 55N22; Secondary 55P42, 55R25
Language: English
Original paper language: Russian
Citation: A. V. Khokhlov, “$k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles”, Math. USSR-Sb., 51:1 (1985), 255–266
Citation in format AMSBIB
\Bibitem{Kho84}
\by A.~V.~Khokhlov
\paper $k\langle n\rangle$ bordism theories with singularities and $k\langle n\rangle$-orientability of bundles
\jour Math. USSR-Sb.
\yr 1985
\vol 51
\issue 1
\pages 255--266
\mathnet{http://mi.mathnet.ru//eng/sm1997}
\crossref{https://doi.org/10.1070/SM1985v051n01ABEH002858}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=732389}
\zmath{https://zbmath.org/?q=an:0567.55003|0547.55001}
Linking options:
  • https://www.mathnet.ru/eng/sm1997
  • https://doi.org/10.1070/SM1985v051n01ABEH002858
  • https://www.mathnet.ru/eng/sm/v165/i2/p258
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024