Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 51, Issue 1, Pages 225–237
DOI: https://doi.org/10.1070/SM1985v051n01ABEH002856
(Mi sm1995)
 

This article is cited in 1 scientific paper (total in 1 paper)

Local residues in $\mathbf C^n$. Algebraic applications

A. K. Tsikh
References:
Abstract: Connected with a ingular point $a$ of an algebraic set $V=\{z\in\mathbf C^n:g(z)=0\}$ is the local residue
\begin{equation} \operatorname{res}\limits_{\Gamma_a}(f/g)=\int_{\Gamma_a}\frac{f(z)}{g(z)}\,dz, \end{equation}
of the rational function $f/g$, where $\Gamma_a$ is a cycle which has a representative in the $n$-dimensional homology group $H_n(\mathbf C^n\setminus V)$ in every neighborhood of the point $a$. The structure of the local residues of the form (1) is described in the case of an isolated singular point $a$: they are expressed in terms of finitely many derivatives of $f$ at $a$. As an application of local residues a theorem of Noether and Bertini is generalized to any number of variables.
Bibliography: 17 titles.
Received: 27.04.1982
Bibliographic databases:
UDC: 517.55+513.6
MSC: 32A27
Language: English
Original paper language: Russian
Citation: A. K. Tsikh, “Local residues in $\mathbf C^n$. Algebraic applications”, Math. USSR-Sb., 51:1 (1985), 225–237
Citation in format AMSBIB
\Bibitem{Tsi84}
\by A.~K.~Tsikh
\paper Local residues in $\mathbf C^n$. Algebraic applications
\jour Math. USSR-Sb.
\yr 1985
\vol 51
\issue 1
\pages 225--237
\mathnet{http://mi.mathnet.ru//eng/sm1995}
\crossref{https://doi.org/10.1070/SM1985v051n01ABEH002856}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=732387}
\zmath{https://zbmath.org/?q=an:0569.32002|0552.32005}
Linking options:
  • https://www.mathnet.ru/eng/sm1995
  • https://doi.org/10.1070/SM1985v051n01ABEH002856
  • https://www.mathnet.ru/eng/sm/v165/i2/p230
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:332
    Russian version PDF:121
    English version PDF:12
    References:65
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024