Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 8, Pages 1063–1093
DOI: https://doi.org/10.1070/SM2007v198n08ABEH003873
(Mi sm1986)
 

This article is cited in 7 scientific papers (total in 7 papers)

The spectrum of a self-adjoint differential operator with rapidly oscillating coefficients on the axis

D. I. Borisovab, R. R. Gadyl'shina

a Bashkir State Pedagogical University
b Nuclear Physics Institute, Academy of Sciences of the Czech Republic
References:
Abstract: The asymptotic behaviour of the spectrum of a self-adjoint second-order differential operator on the axis is investigated. The coefficients of this operator depend on rapid and slow variables and are periodic in the rapid variable. The period of oscillations in the rapid variable is a small parameter. The dependence of the coefficients on the rapid variable is localized, and they stop depending on it at infinity. Asymptotic expansions for the eigenvalues and the eigenfunctions of the operator in question are constructed. It is shown that, apart from eigenvalues convergent to eigenvalues of the homogenized operator as the small parameter converges to zero, the perturbed operator can also have an eigenvalue convergent to the boundary of the continuous spectrum. Necessary and sufficient conditions for the existence of such an eigenvalue are obtained.
Bibliography: 22 titles.
Received: 18.07.2006 and 19.03.2007
Bibliographic databases:
UDC: 517.956
MSC: 34L20, 47E05
Language: English
Original paper language: Russian
Citation: D. I. Borisov, R. R. Gadyl'shin, “The spectrum of a self-adjoint differential operator with rapidly oscillating coefficients on the axis”, Sb. Math., 198:8 (2007), 1063–1093
Citation in format AMSBIB
\Bibitem{BorGad07}
\by D.~I.~Borisov, R.~R.~Gadyl'shin
\paper The spectrum of a~self-adjoint differential
operator with rapidly oscillating coefficients on the
axis
\jour Sb. Math.
\yr 2007
\vol 198
\issue 8
\pages 1063--1093
\mathnet{http://mi.mathnet.ru//eng/sm1986}
\crossref{https://doi.org/10.1070/SM2007v198n08ABEH003873}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355433}
\zmath{https://zbmath.org/?q=an:1137.34039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250726000008}
\elib{https://elibrary.ru/item.asp?id=9541662}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35948981169}
Linking options:
  • https://www.mathnet.ru/eng/sm1986
  • https://doi.org/10.1070/SM2007v198n08ABEH003873
  • https://www.mathnet.ru/eng/sm/v198/i8/p3
    Erratum
    • Errata
      D. I. Borisov, R. R. Gadyl'shin
      Mat. Sb., 2008, 199:3, 160
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025