|
This article is cited in 27 scientific papers (total in 27 papers)
Estimates for the characteristic function of a prime ideal
Yu. V. Nesterenko
Abstract:
Let $k$ be a field of characteristic 0, $\mathfrak p$ a homogeneous prime ideal of the ring $k[X]=k[x_0,\dots,x_m]$ $(m\geqslant1)$ and $\mathfrak L_\mathfrak p(\nu)$ the set of residues of homogeneous polynomials of degree $\nu$ ($\nu$ is a natural number) in $k[X]$, taken modulo $\mathfrak p$. In this paper an inequality is proved for the dimension of the vector space $\mathfrak L_\mathfrak p(\nu)$ which is valid for $\nu\geqslant1$.
Bibliography: 6 titles.
Received: 07.02.1983
Citation:
Yu. V. Nesterenko, “Estimates for the characteristic function of a prime ideal”, Mat. Sb. (N.S.), 123(165):1 (1984), 11–34; Math. USSR-Sb., 51:1 (1985), 9–32
Linking options:
https://www.mathnet.ru/eng/sm1980https://doi.org/10.1070/SM1985v051n01ABEH002844 https://www.mathnet.ru/eng/sm/v165/i1/p11
|
Statistics & downloads: |
Abstract page: | 506 | Russian version PDF: | 144 | English version PDF: | 27 | References: | 52 |
|