Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 55, Issue 1, Pages 39–54
DOI: https://doi.org/10.1070/SM1986v055n01ABEH002990
(Mi sm1956)
 

This article is cited in 1 scientific paper (total in 1 paper)

Subspaces generated by the rows of circulants, and minimal irreducible linear groups

D. A. Suprunenko
References:
Abstract: The author describes the soluble minimal irreducible subgroups of $GL(pq,K)$, where $p$ and $q$ are prime numbers, $p>q$, $q\nmid p-1$, and $K$ is an arbitrary subfield of the field of real numbers. He proves that up to conjugacy, there exist exactly 4 soluble minimal irreducible subgroups in $GL(pq,K)$: $G_1=D_1H_1$, $G_2=D_2H_1$, $G_3=D_3H_2$, and $G_4 = D_4H_3$, where each $D_i$ is a Sylow 2-subgroup of $G_i$ and $H_1$, $H_2$, and $H_3$ are minimal transitive groups of permutation matrices of degree $pq$, $G_1$ and $G_2$ are metabelian groups, each of which is generated by two matrices, and $G_3$ and $G_4$ are soluble groups of class 3 with three generators:
$$ |G_1|=2^{m_{pq}}pq, \quad |G_2|=2^{m_p+m_q}pq, \quad |G_3|=2^{qm_p}p^mq, \quad |G_4|=2^{pm_q}pq^l, $$
where $m_d$ is the order of the number 2 modul $d$, $m$ is the order of $p$ modulo $q$, and $l$ is the order of $q$ modulo $p$.
The properties of subspaces generated by the rows of circulants over a prime finite field are investigated. The connection between these properties and the problem of describing certain classes of minimal irreducible linear groups is indicated.
Bibliography: 18 titles.
Received: 20.09.1983
Bibliographic databases:
UDC: 512.5
MSC: Primary 20G20; Secondary 20F16
Language: English
Original paper language: Russian
Citation: D. A. Suprunenko, “Subspaces generated by the rows of circulants, and minimal irreducible linear groups”, Math. USSR-Sb., 55:1 (1986), 39–54
Citation in format AMSBIB
\Bibitem{Sup85}
\by D.~A.~Suprunenko
\paper Subspaces generated by the rows of circulants, and minimal irreducible linear groups
\jour Math. USSR-Sb.
\yr 1986
\vol 55
\issue 1
\pages 39--54
\mathnet{http://mi.mathnet.ru//eng/sm1956}
\crossref{https://doi.org/10.1070/SM1986v055n01ABEH002990}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=791316}
\zmath{https://zbmath.org/?q=an:0596.20040|0575.20043}
Linking options:
  • https://www.mathnet.ru/eng/sm1956
  • https://doi.org/10.1070/SM1986v055n01ABEH002990
  • https://www.mathnet.ru/eng/sm/v169/i1/p40
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024