Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 2, Pages 173–194
DOI: https://doi.org/10.1070/SM1997v188n02ABEH000193
(Mi sm193)
 

This article is cited in 7 scientific papers (total in 7 papers)

Certain balanced groups and 3-manifolds

Kim Ann Chia, A. I. Kostrikinb

a Pusan National University
b Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Five series of groups with finite presentations are constructed. Their definition is based on the construction of some closed, compact, orientable 3-manifolds, so that these groups are balanced. The derived quotients of the groups are described. Almost all these groups are proved to be infinite; moreover, the linear groups $\operatorname {SL}(2,F)$ with $|F:{\mathbb Q}|\leqslant 6$ are involved in many of them. The relevant arguments are elementary, but the results obtained on balanced groups will be useful in further studies of 3-manifolds.
Received: 12.09.1996
Russian version:
Matematicheskii Sbornik, 1997, Volume 188, Number 2, Pages 3–24
DOI: https://doi.org/10.4213/sm193
Bibliographic databases:
UDC: 513.8+519.4
MSC: 20F05, 57M05
Language: English
Original paper language: Russian
Citation: Kim Ann Chi, A. I. Kostrikin, “Certain balanced groups and 3-manifolds”, Mat. Sb., 188:2 (1997), 3–24; Sb. Math., 188:2 (1997), 173–194
Citation in format AMSBIB
\Bibitem{KimKos97}
\by Kim Ann Chi, A.~I.~Kostrikin
\paper Certain balanced groups and 3-manifolds
\jour Mat. Sb.
\yr 1997
\vol 188
\issue 2
\pages 3--24
\mathnet{http://mi.mathnet.ru/sm193}
\crossref{https://doi.org/10.4213/sm193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1453257}
\zmath{https://zbmath.org/?q=an:0906.20021}
\transl
\jour Sb. Math.
\yr 1997
\vol 188
\issue 2
\pages 173--194
\crossref{https://doi.org/10.1070/SM1997v188n02ABEH000193}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XE98900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031498237}
Linking options:
  • https://www.mathnet.ru/eng/sm193
  • https://doi.org/10.1070/SM1997v188n02ABEH000193
  • https://www.mathnet.ru/eng/sm/v188/i2/p3
    Erratum
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:435
    Russian version PDF:208
    English version PDF:16
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024