Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 60, Issue 2, Pages 547–567
DOI: https://doi.org/10.1070/SM1988v060n02ABEH003186
(Mi sm1901)
 

On the linear independence of the Keldysh derived chains for operator-valued functions analytic in a half-plane

G. V. Radzievskii
References:
Abstract: Criteria are established for linear independence of Keldysh derived chains constructed from the root vectors of functions analytic in the left half-plane with values in the set of operators acting in a Hilbert space $\mathfrak H$. In particular, an operator-valued function $L(\lambda)=L_0+\lambda L_1+\dots+\lambda^nL_n$ is considered. Let $\operatorname{Im}L(i\tau)\geqslant0$ for $\tau\in\mathbf R$ and suppose that zero does not belong to the numerical range of the operator $L(i\tau_0)$ for some $\tau_0\in\mathbf R$. Denote by $x_\mu$ an eigenvector $L(\tau)$ corresponding to an eigenvalue $\mu$, and by $M$ the subset of eigenvalues $\mu$ for which $\operatorname{Re}\mu<0$ and $i(L'(\mu)x_\mu,x_\mu)<0$ for $\operatorname{Re}\mu=0$. Then it is proved that the vectors $\widetilde y_\mu=\{x_\mu,\mu x_\mu,\dots,\mu^{m-1}x_\mu\}$ that belong to the direct sum of $m$ copies of the space $\mathfrak H$ are linearly independent when $\mu\in M$ while $m\geqslant[(n+1)/2]$. If, moreover, the operator $(i)^nL_n\geqslant0$, then this assertion holds also for $m=[n/2]$. A connection is exhibited between the results obtained here and the question of uniqueness of the solution of a problem on the half-line for systems of ordinary differential equations with constant coefficients.
Bibliography: 7 titles.
Received: 10.12.1985
Bibliographic databases:
UDC: 517.43
MSC: Primary 47A10, 47A56; Secondary 34B05, 47A12, 47A60
Language: English
Original paper language: Russian
Citation: G. V. Radzievskii, “On the linear independence of the Keldysh derived chains for operator-valued functions analytic in a half-plane”, Math. USSR-Sb., 60:2 (1988), 547–567
Citation in format AMSBIB
\Bibitem{Rad87}
\by G.~V.~Radzievskii
\paper On the linear independence of the Keldysh derived chains for operator-valued functions analytic in a~half-plane
\jour Math. USSR-Sb.
\yr 1988
\vol 60
\issue 2
\pages 547--567
\mathnet{http://mi.mathnet.ru//eng/sm1901}
\crossref{https://doi.org/10.1070/SM1988v060n02ABEH003186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=886646}
\zmath{https://zbmath.org/?q=an:0711.47011|0632.47016}
Linking options:
  • https://www.mathnet.ru/eng/sm1901
  • https://doi.org/10.1070/SM1988v060n02ABEH003186
  • https://www.mathnet.ru/eng/sm/v174/i4/p556
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:274
    Russian version PDF:87
    English version PDF:2
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024