Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 58, Issue 1, Pages 185–205
DOI: https://doi.org/10.1070/SM1987v058n01ABEH003099
(Mi sm1864)
 

This article is cited in 63 scientific papers (total in 63 papers)

Capacity of condensers and spatial mappings quasiconformal in the mean

V. I. Kruglikov
References:
Abstract: With the concept of the variational $p$-capacity of a condenser as a starting point, the mean inner and outer deviations are defined for homeomorphic mappings of bounded domains in $R^n$, $n\geqslant3$. Analytic expressions which are integral means of the usual analytic deviations of a homeomorphism are established for such deviations. Various equivalent geometric and analytic definitions are given for mappings quasiconformal in the mean and for quasiconformal mappings. An estimate is determined for the distortion of Euclidean distances under mappings quasiconformal in the mean and other mappings.
Bibliography: 14 titles.
Received: 22.04.1985
Bibliographic databases:
UDC: 517.5
MSC: Primary 30C60, 31B15, 58C99; Secondary 30C85
Language: English
Original paper language: Russian
Citation: V. I. Kruglikov, “Capacity of condensers and spatial mappings quasiconformal in the mean”, Math. USSR-Sb., 58:1 (1987), 185–205
Citation in format AMSBIB
\Bibitem{Kru86}
\by V.~I.~Kruglikov
\paper Capacity of condensers and spatial mappings quasiconformal in the mean
\jour Math. USSR-Sb.
\yr 1987
\vol 58
\issue 1
\pages 185--205
\mathnet{http://mi.mathnet.ru//eng/sm1864}
\crossref{https://doi.org/10.1070/SM1987v058n01ABEH003099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=854971}
\zmath{https://zbmath.org/?q=an:0619.30025}
Linking options:
  • https://www.mathnet.ru/eng/sm1864
  • https://doi.org/10.1070/SM1987v058n01ABEH003099
  • https://www.mathnet.ru/eng/sm/v172/i2/p185
  • This publication is cited in the following 63 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024