Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 58, Issue 1, Pages 83–100
DOI: https://doi.org/10.1070/SM1987v058n01ABEH003093
(Mi sm1851)
 

This article is cited in 29 scientific papers (total in 29 papers)

Invertibility of nonautonomous functional-differential operators

V. E. Slyusarchuk
References:
Abstract: Let $C^{(m)}$ be the Banach space of continuous and bounded functions on $R$ that take values in a finite-dimensional Banach space $E$ and have derivatives up to and including order $m$. The norm in $C^{(m)}$ is given by $\|x\|_{C^{(m)}}=\sup_{t\in R,k=\overline{0,m}}\big\|\frac{d^kx(t)}{dt^k}\big\|_E$. Let $C^{(m)}_\omega$ be the Banach space of $\omega$-periodic functions with the same norm as $C^{(m)}$.
Theorem. {\it Suppose
$1)\ A$ is a $c$-completely continuous element of the space $L(C^{(m)},C^{(0)})$ $(m\geqslant0);$
$2)\ \operatorname{Ker}\bigl(\frac{d^m}{dt^m}+A\bigr)=0;$
$3)$ there exists a completely continuous operator $A_\omega\in L(C_\omega^{(m)},C_\omega^{(0)})$ $(\omega>0)$ for which
$$ \lim_{\omega\to+\infty}\sup_{\|x\|_{C_\omega^{(m)}}=1,|t|<T}\|(Ax)(t)-(A_\omega x)(t)\|_E=0\qquad\forall\,T>0 $$
and
$$ \varlimsup_{\omega\to+\infty}\inf_{\|x\|_{C_\omega^{(m)}}=1}\max_{t\in[-\frac\omega2,\frac\omega2]}\bigg\|\frac{d^mx(t)}{dt^m}+(A_\omega x)(t)\bigg\|_E>0. $$

Then the operator $\frac{d^m}{dt^m}+A$ has a $c$-continuous inverse.}
Using this theorem the invertibility of a large class of operators is studied, which class contains in particular Poisson stable operators.
Bibliography: 22 titles.
Received: 28.03.1985
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1986, Volume 130(172), Number 1(5), Pages 86–104
Bibliographic databases:
UDC: 517.9
MSC: 34K30, 47E05
Language: English
Original paper language: Russian
Citation: V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators”, Mat. Sb. (N.S.), 130(172):1(5) (1986), 86–104; Math. USSR-Sb., 58:1 (1987), 83–100
Citation in format AMSBIB
\Bibitem{Sly86}
\by V.~E.~Slyusarchuk
\paper Invertibility of nonautonomous functional-differential operators
\jour Mat. Sb. (N.S.)
\yr 1986
\vol 130(172)
\issue 1(5)
\pages 86--104
\mathnet{http://mi.mathnet.ru/sm1851}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=847344}
\zmath{https://zbmath.org/?q=an:0646.34016}
\transl
\jour Math. USSR-Sb.
\yr 1987
\vol 58
\issue 1
\pages 83--100
\crossref{https://doi.org/10.1070/SM1987v058n01ABEH003093}
Linking options:
  • https://www.mathnet.ru/eng/sm1851
  • https://doi.org/10.1070/SM1987v058n01ABEH003093
  • https://www.mathnet.ru/eng/sm/v172/i1/p86
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:426
    Russian version PDF:114
    English version PDF:15
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024