Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 57, Issue 2, Pages 561–590
DOI: https://doi.org/10.1070/SM1987v057n02ABEH003087
(Mi sm1845)
 

This article is cited in 5 scientific papers (total in 5 papers)

An estimate for the number of terms in the Hilbert–Kamke problem

D. A. Mit'kin
References:
Abstract: Let $r(n)$ denote the smallest $s$ for which the system of equations
\begin{equation} x^j_1+\dots+x^j_s=N_j\qquad(j=1,\dots,n) \end{equation}
is solvable in nonnegative integers $x_1,\dots,x_s$ for all sufficiently large natural numbers $N_1,\dots,N_n$ which satisfy the following conditions:
1) the singular integral $\gamma=\gamma(N_1,\dots,N_n)$ of the system (1) satisfies the inequality $\gamma\geqslant c(n,s)>0$ (the order conditions).
2) the system of equations $\sum^n_{k=1}k^jt_k=N_j$ $(j=1,\dots,n)$ is solvable in integers $t_1,\dots,t_n$ (the arithmetic conditions).
In 1937, K. K. Mardzhanishvili proved that $n^2\ll r(n)\leqslant n^42^{2n^2-n-2}$. G. I. Arkhipov has recently obtained upper and lower estimates for $r(n)$ having the same order of magnitude: $2^n-1\leqslant r(n)\leqslant3n^32^n-n$ $(n\geqslant5)$.
In this paper, the upper estimate for $r(n)$ is reduced to
\begin{equation} r(n)\leqslant\sum_{0\leqslant k\leqslant[\ln n/\ln2]}2^k(2^{[n/2^k]}-1)\qquad(n\geqslant12); \end{equation}
in particular, the asymptotic formula $r(n)=2^n+O(2^{n/2})$ is obtained. It is conjectured that the estimate (2) is best possible.
Bibliography: 20 titles.
Received: 20.04.1985
Bibliographic databases:
UDC: 511
MSC: Primary 11P05, 11D72; Secondary 11P55, 11D41, 11L03
Language: English
Original paper language: Russian
Citation: D. A. Mit'kin, “An estimate for the number of terms in the Hilbert–Kamke problem”, Math. USSR-Sb., 57:2 (1987), 561–590
Citation in format AMSBIB
\Bibitem{Mit86}
\by D.~A.~Mit'kin
\paper An estimate for the number of terms in the Hilbert--Kamke problem
\jour Math. USSR-Sb.
\yr 1987
\vol 57
\issue 2
\pages 561--590
\mathnet{http://mi.mathnet.ru//eng/sm1845}
\crossref{https://doi.org/10.1070/SM1987v057n02ABEH003087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=842400}
\zmath{https://zbmath.org/?q=an:0619.10012|0608.10020}
Linking options:
  • https://www.mathnet.ru/eng/sm1845
  • https://doi.org/10.1070/SM1987v057n02ABEH003087
  • https://www.mathnet.ru/eng/sm/v171/i4/p549
    Cycle of papers
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:303
    Russian version PDF:113
    English version PDF:14
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024