Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 65, Issue 2, Pages 305–321
DOI: https://doi.org/10.1070/SM1990v065n02ABEH001311
(Mi sm1788)
 

This article is cited in 23 scientific papers (total in 23 papers)

Retraction properties of an orbit space

S. A. Antonyan
References:
Abstract: In this paper there is an investigation, for the case of a compact group G, of the orbit space X/G of a given G-space X, from the point of view of the theory of retracts. A particular case of the main result asserts that if one of the spaces X and G has countable weight and X is a G-A(N)R for metrizable spaces, then X/G is an A(N)R for metrizable spaces.
New results about the equivariant embedding of metrizable G-spaces are also obtained.
Bibliography: 28 titles.
Received: 19.10.1987
Bibliographic databases:
UDC: 515.12
MSC: Primary 54C55; Secondary 54H15
Language: English
Original paper language: Russian
Citation: S. A. Antonyan, “Retraction properties of an orbit space”, Math. USSR-Sb., 65:2 (1990), 305–321
Citation in format AMSBIB
\Bibitem{Ant88}
\by S.~A.~Antonyan
\paper Retraction properties of an orbit space
\jour Math. USSR-Sb.
\yr 1990
\vol 65
\issue 2
\pages 305--321
\mathnet{http://mi.mathnet.ru/eng/sm1788}
\crossref{https://doi.org/10.1070/SM1990v065n02ABEH001311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=976513}
\zmath{https://zbmath.org/?q=an:0685.54013}
Linking options:
  • https://www.mathnet.ru/eng/sm1788
  • https://doi.org/10.1070/SM1990v065n02ABEH001311
  • https://www.mathnet.ru/eng/sm/v179/i3/p300
  • This publication is cited in the following 23 articles:
    1. Jorge Alberto Sánchez Martínez, Yazmín Hernández Chávez, Gerardo Hernández Chávez, “A lighthearted proof of the existence of G-fibrant extensions”, Topology and its Applications, 347 (2024), 108884  crossref
    2. Sergey A. Antonyan, “Equivariant Insight into Hyperspaces of convex bodies”, Topology and its Applications, 2024, 109096  crossref
    3. West J., “Involutions of Hilbert Cubes That Are Hyperspaces of Peano Continua”, Topology Appl., 240 (2018), 238–248  crossref  mathscinet  zmath  isi
    4. Belegradek I., “Hyperspaces of Smooth Convex Bodies Up to Congruence”, Adv. Math., 332 (2018), 176–198  crossref  mathscinet  zmath  isi
    5. Antonyan S.A., Jonard-Perez N., Juarez-Ordonez S., “Hyperspaces of Keller Compacta and their Orbit Spaces”, J. Math. Anal. Appl., 412:2 (2014), 613–619  crossref  mathscinet  zmath  isi
    6. Alexander Bykov, Amalia Torres Juan, “Fibrant extensions of free G-spaces”, Topology and its Applications, 2011  crossref  mathscinet
    7. Sibe Mardesic, “On inverse limits of compact spaces. Correction of a proof”, Glas. Mat. Ser. III, 45:2 (2010), 525  crossref  mathscinet  zmath
    8. S. M. Ageev, D. Repovš, “On extending actions of groups”, Sb. Math., 201:2 (2010), 159–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Antonyan S., “A Characterization of Equivariant Absolute Extensors and the Equivariant Dugundji Theorem”, Houst. J. Math., 31:2 (2005), 451–462  mathscinet  zmath  isi
    10. S. A. Antonyan, “New topological models for Banach–Mazur compacta”, J. Math. Sci., 146:1 (2007), 5465–5473  mathnet  crossref  mathscinet  zmath  elib
    11. Sergey Antonyan, “West's problem on equivariant hyperspaces and Banach-Mazur compacta”, Trans. Amer. Math. Soc., 355:8 (2003), 3379  crossref
    12. S. M. Ageev, D. Repovš, “The Jaworowski Method in the Problem of the Preservation of Extensor Properties by the Orbit Functor”, Math. Notes, 71:3 (2002), 428–431  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. Sergei M. Ageev, Duŝan Repovŝ, “On Banach-Mazur compacta”, J Austral Math Soc, 69:3 (2000), 316  crossref  mathscinet  zmath  elib
    14. S. A. Antonyan, “Based free compact Lie group actions on the Hilbert cube”, Math. Notes, 65:2 (1999), 135–143  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. Antonyan S., “Extensorial Properties of Orbit Spaces of Proper Group Actions”, Topology Appl., 98:1-3 (1999), 35–46  crossref  mathscinet  zmath  isi
    16. Ageev S., Bogatyi S., Fabel P., “The Banach-Mazur Compactum Q(N) Is an Ar”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1998, no. 1, 11–13  mathscinet  zmath  isi
    17. S. A. Antonyan, “Existence of a cut for arbitrary compact transformations groups”, Math. Notes, 56:5 (1994), 1101–1104  mathnet  crossref  mathscinet  zmath  isi
    18. Antonian S., “Preservation of K-Connectedness and Local K-Connectedness by Symmetrical Degree Functor”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1994, no. 5, 23–28  mathscinet  isi
    19. Basmanov V., “Functors and Equivariant Absolute Retracts”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1994, no. 4, 29–31  mathscinet  zmath  isi
    20. Ageyev S., “Extensor Properties of Orbits Space and Problem of Action Extension”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1994, no. 1, 11–16  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:424
    Russian version PDF:145
    English version PDF:40
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025