|
Introduction to the theory of $(\nu_1,\dots,\nu_{r-1})$-transforms
M. I. Klyuchantsev
Abstract:
The transforms
\begin{gather*}
\varphi_\nu(x)=\int_0^\infty\dotsi\int_0^\infty f\Bigl(x\prod t_i\Bigr)e^{-\sum{t_i^r}}\prod t _i^{r{\nu_i}+r-1}\,dt_i,
\\
f(x)=\biggl(\frac r{2\pi i}\biggr)^{r-1}\int_{-\infty}^{(0+)}\dotsi\int_{-\infty}^{(0+)}\varphi_\nu\Bigl(x\prod t_i^{-\frac1r}\Bigr)e^{\sum{t_i}}\prod t_i^{{-\nu_i}-1}\,dt_i
\end{gather*}
are introduced for an integer $r\geqslant2$ and a given vector $\nu=(\nu_1,\dots,\nu_{r-1})$. Their duality is substantiated, applications of the differentiation operations are studied, and other properties of $\nu$-transforms are established. A number of examples are given to illustrate the method of $\nu$-transforms for solving some classes of differential equations and boundary value problems for partial differential equations.
Bibliography: 9 titles.
Received: 10.10.1985 and 31.07.1986
Citation:
M. I. Klyuchantsev, “Introduction to the theory of $(\nu_1,\dots,\nu_{r-1})$-transforms”, Math. USSR-Sb., 60:1 (1988), 163–176
Linking options:
https://www.mathnet.ru/eng/sm1771https://doi.org/10.1070/SM1988v060n01ABEH003161 https://www.mathnet.ru/eng/sm/v174/i2/p167
|
Statistics & downloads: |
Abstract page: | 395 | Russian version PDF: | 107 | English version PDF: | 24 | References: | 68 | First page: | 2 |
|