Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 12, Pages 1755–1789
DOI: https://doi.org/10.1070/SM1996v187n12ABEH000177
(Mi sm177)
 

This article is cited in 30 scientific papers (total in 31 papers)

The trajectory attractor of a non-linear elliptic system in a cylindrical domain

M. I. Vishika, S. V. Zelikb

a Institute for Information Transmission Problems, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
References:
Abstract: In the half-cylinder $\Omega _+=\mathbb R_+\times \omega$, $\omega \in \mathbb R^n$, we study a second-order system of elliptic equations containing a non-linear function $f(u,x_0,x')=(f^1,\dots ,f^k)$ and right-hand side $g(x_0,x')=(g^1,\dots ,g^k)$, $x_0\in \mathbb R_+$, $x'\in \omega$. If these functions satisfy certain conditions, then it is proved that the first boundary-value problem for this system has at least one solution belonging to the space $[H_{2,p}^{\text {loc}}(\Omega _+)]^k$, $p>n+1$. We study the behaviour of the solutions $u(x_0,x')$ of this system a $x_0\to +\infty$. Along with the original system we study the family of systems obtained from it through shifting with respect to $x_0$ by all $\forall \,h$, $h\geqslant 0$. A semigroup $\{T(h),\ h\geqslant 0\}$, $T(h)u(x_0,\,\cdot \,)=u(x_0+h,\,\cdot \,)$ acts on the set of solutions $K^+$ of these systems of equations. It is proved that this semigroup has a trajectory attractor $\mathbb A$ consisting of the solutions $v(x_0,x')$ in $K^+$ that admit a bounded extension to the entire cylinder $\Omega =\mathbb R\times \omega$. Solutions $u(x_0,x')\in K^+$ are attracted by the attractor $\mathbb A$ as $x_0\to +\infty$. We give a number of applications and consider some questions of the theory of perturbations of the original system of equations.
Received: 26.08.1996
Russian version:
Matematicheskii Sbornik, 1996, Volume 187, Number 12, Pages 21–56
DOI: https://doi.org/10.4213/sm177
Bibliographic databases:
UDC: 517.95
MSC: Primary 35J60; Secondary 35B35
Language: English
Original paper language: Russian
Citation: M. I. Vishik, S. V. Zelik, “The trajectory attractor of a non-linear elliptic system in a cylindrical domain”, Mat. Sb., 187:12 (1996), 21–56; Sb. Math., 187:12 (1996), 1755–1789
Citation in format AMSBIB
\Bibitem{VisZel96}
\by M.~I.~Vishik, S.~V.~Zelik
\paper The trajectory attractor of a~non-linear elliptic system in a~cylindrical domain
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 12
\pages 21--56
\mathnet{http://mi.mathnet.ru/sm177}
\crossref{https://doi.org/10.4213/sm177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1442210}
\zmath{https://zbmath.org/?q=an:0871.35016}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 12
\pages 1755--1789
\crossref{https://doi.org/10.1070/SM1996v187n12ABEH000177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WQ48500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030527005}
Linking options:
  • https://www.mathnet.ru/eng/sm177
  • https://doi.org/10.1070/SM1996v187n12ABEH000177
  • https://www.mathnet.ru/eng/sm/v187/i12/p21
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:515
    Russian version PDF:214
    English version PDF:13
    References:51
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024