|
Fixed points and differentiability of the norm
N. M. Gulevich, S. V. Konyagin, R. V. Rakhmankulov
Abstract:
It is proved that in a (real) uniformly smooth Banach space $X$ a nonexpansive mapping $f\colon X\to X$ has a fixed point if
$$
\inf\{\|x-y\|:x\in f(\partial E),\ y\in X\setminus\operatorname{\overline{co}}E\}>0
$$
for some nonempty closed bounded (not necessarily convex) set $E\subset X$ with boundary $\partial E$ and closed convex hull $\operatorname{\overline{co}}E$.
It is also shown that a nonexpansive mapping $f\colon B\to X$, where $B$ is a closed bounded convex subset of a Hilbert space or a two-dimensional strictly convex Banach space $X$, has a fixed point if
$$
\{x+t(f(x)-x):0<t\leqslant 1\}\cap C\ne\varnothing\quad\text{for all}\quad x\in\partial C
$$
for some nonempty closed (not necessarily convex) set $C\subset B$.
Bibliography: 11 titles.
Received: 24.08.1987
Citation:
N. M. Gulevich, S. V. Konyagin, R. V. Rakhmankulov, “Fixed points and differentiability of the norm”, Math. USSR-Sb., 64:2 (1989), 461–469
Linking options:
https://www.mathnet.ru/eng/sm1754https://doi.org/10.1070/SM1989v064n02ABEH003320 https://www.mathnet.ru/eng/sm/v178/i4/p468
|
|