Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 64, Issue 1, Pages 263–276
DOI: https://doi.org/10.1070/SM1989v064n01ABEH003306
(Mi sm1740)
 

On sufficient sets in spaces of entire functions of several variables

A. B. Sekerin
References:
Abstract: The main result is
Theorem 1. {\it Let $D$ be a bounded convex domain in $\mathbf C^n,$ $n\geqslant2,$ with $0\in D$. Let $H(z)=\max_{\lambda\in\overline D}\mathbf{Re}\langle\lambda,z\rangle$. Let $L(z)$ be an entire function of exponential type whose zero set $S$ is the union of planes $P_m=\{z:\langle a_m,z\rangle=c_m\},$ $m\in\mathbf N,$ $|a_m|=1$. Suppose the following conditions hold}:
a) {\it there exist constants $c,$ $r_0,$ $d_0,$ $\gamma\in(0,1),$ such that the estimate
$$ \left|\ln|L(z)|-H(z)\right|\leqslant c\left|\ln d\right||z|^{1-\gamma} $$
holds if the point $z\in\mathbf C^n,$ satisfies $|z|\geqslant r_0,$ $\inf_{w\in S}|z-w|=d(z,S)\geqslant d>0,$ $d<d_0$};
b) {\it for every $m$ the restriction of the entire function $(\langle a_m,z\rangle-c_m)^{-1}L(z)$ to the plane $P_m$ is not identically zero};
c) {\it there exist constants $c$ and $N$ such that for $m\ne k$ either $d(P_m,P_k)\geqslant c|c_m|^{-N}|c_k|^{-N}$ or $1-|\langle a_m,\overline a_k\rangle|\geqslant c|c_m|^{-N}|c_k|^{-N}$.
Then every analytic function $f(z)$ in the domain $D$ can be represented by a series
$$ f(z)=\sum_{m=1}^\infty\int_{P_m}\exp\langle\lambda,z\rangle\,d\mu_m(\lambda) $$
converging in the topology of $H(D)$.}
Bibliography: 11 titles.
Received: 27.06.1987
Bibliographic databases:
UDC: 517.537
MSC: Primary 32A15; Secondary 32A30, 30A50
Language: English
Original paper language: Russian
Citation: A. B. Sekerin, “On sufficient sets in spaces of entire functions of several variables”, Math. USSR-Sb., 64:1 (1989), 263–276
Citation in format AMSBIB
\Bibitem{Sek88}
\by A.~B.~Sekerin
\paper On sufficient sets in spaces of entire functions of several variables
\jour Math. USSR-Sb.
\yr 1989
\vol 64
\issue 1
\pages 263--276
\mathnet{http://mi.mathnet.ru//eng/sm1740}
\crossref{https://doi.org/10.1070/SM1989v064n01ABEH003306}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954928}
\zmath{https://zbmath.org/?q=an:0668.32004|0651.32002}
Linking options:
  • https://www.mathnet.ru/eng/sm1740
  • https://doi.org/10.1070/SM1989v064n01ABEH003306
  • https://www.mathnet.ru/eng/sm/v178/i2/p260
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024