Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 64, Issue 1, Pages 23–39
DOI: https://doi.org/10.1070/SM1989v064n01ABEH003292
(Mi sm1726)
 

This article is cited in 13 scientific papers (total in 13 papers)

The $A$-integral and boundary values of analytic functions

T. S. Salimov
References:
Abstract: Let $G$ be a simply connected bounded domain on the complex plane $\mathbf C$, let $\gamma=\partial G$, and assume that $\gamma$ is a closed rectifiable Jordan curve. Denote by $m$ the Lebesgue linear measure on $\gamma$. For a function $F$ analytic on $G$ and for $\alpha>1$ let $F_\alpha^*(t)=\sup\{|F(z)|:z\in G,\ |z-t|<\alpha\rho(z,\gamma)\}$, $t\in\gamma$, where $\rho(z,\gamma)$ is the Euclidean distance from $z$ to $\gamma$. It is proved that if for some $\alpha>2$
\begin{equation} m\{t\in\gamma:F^*_\alpha(t)>\lambda\}=o(\lambda^{-1}),\qquad\lambda\to+\infty, \end{equation}
then $F$ has a finite nontangential boundary value $F(t)$ for almost all $t\in\gamma$, and
$$ (A)\int_\gamma F(t)\,dt=0, $$
where the integral on the left-hand side is understood as an $A$-integral. It is also proved that under condition (1) the function $F$ is representable in $G$ by the Cauchy $A$-integral of its nontangential boundary values on $\gamma$. Further, if $\gamma$ is regular (i.e., $m\{t\in\gamma:|t-z|\leqslant r\}\leqslant Cr$ for all $z\in\mathbf C$ and $r>0$, where the constant $C$ is independent of $z$ and $r$), then these assertions are valid if condition (1) holds for some $\alpha>1$.
The question of representability of integrals of Cauchy type by Cauchy $A$-integrals is studied. In particular, well-known results of Ul'yanov on this question are carried over to the case of domains with a regular boundary. It is proved that the condition of regularity of the boundary cannot be weakened here.
Bibliography: 18 titles.
Received: 29.06.1987
Bibliographic databases:
UDC: 517.5
MSC: Primary 30E20; Secondary 30E25
Language: English
Original paper language: Russian
Citation: T. S. Salimov, “The $A$-integral and boundary values of analytic functions”, Math. USSR-Sb., 64:1 (1989), 23–39
Citation in format AMSBIB
\Bibitem{Sal88}
\by T.~S.~Salimov
\paper The $A$-integral and boundary values of analytic functions
\jour Math. USSR-Sb.
\yr 1989
\vol 64
\issue 1
\pages 23--39
\mathnet{http://mi.mathnet.ru//eng/sm1726}
\crossref{https://doi.org/10.1070/SM1989v064n01ABEH003292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=945898}
\zmath{https://zbmath.org/?q=an:0669.30031|0654.30031}
Linking options:
  • https://www.mathnet.ru/eng/sm1726
  • https://doi.org/10.1070/SM1989v064n01ABEH003292
  • https://www.mathnet.ru/eng/sm/v178/i1/p24
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025