Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 63, Issue 2, Pages 363–374
DOI: https://doi.org/10.1070/SM1989v063n02ABEH003279
(Mi sm1708)
 

This article is cited in 17 scientific papers (total in 17 papers)

On a Shirshov basis of relatively free algebras of complexity $n$

A. Ya. Belov
References:
Abstract: A Shirshov basis is a set of elements of an algebra $A$ over which $A$ has bounded height in the sense of Shirshov.
A description is given of Shirshov bases consisting of words for associative or alternative relatively free algebras over an arbitrary commutative associative ring $\Phi$ with unity. It is proved that the set of monomials of degree at most $m^2$ is a Shirshov basis in a Jordan PI-algebra of degree $m$. It is shown that under certain conditions on $\operatorname{var}(B)$ (satisfied by alternative and Jordan PI-algebras), if each factor of $B$ with nilpotent projections of all elements of $M$ is nilpotent, then $M$ is a Shirshov basis of $B$ if $M$ generates $B$ as an algebra.
Bibliography: 12 titles.
Received: 06.10.1986
Bibliographic databases:
UDC: 519.48
MSC: Primary 16A06, 17D05; Secondary 16A38
Language: English
Original paper language: Russian
Citation: A. Ya. Belov, “On a Shirshov basis of relatively free algebras of complexity $n$”, Math. USSR-Sb., 63:2 (1989), 363–374
Citation in format AMSBIB
\Bibitem{Bel88}
\by A.~Ya.~Belov
\paper On a~Shirshov basis of relatively free algebras of complexity~$n$
\jour Math. USSR-Sb.
\yr 1989
\vol 63
\issue 2
\pages 363--374
\mathnet{http://mi.mathnet.ru//eng/sm1708}
\crossref{https://doi.org/10.1070/SM1989v063n02ABEH003279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=937647}
\zmath{https://zbmath.org/?q=an:0667.16015|0659.16012}
Linking options:
  • https://www.mathnet.ru/eng/sm1708
  • https://doi.org/10.1070/SM1989v063n02ABEH003279
  • https://www.mathnet.ru/eng/sm/v177/i3/p373
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024