Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 63, Issue 2, Pages 319–336
DOI: https://doi.org/10.1070/SM1989v063n02ABEH003276
(Mi sm1704)
 

This article is cited in 18 scientific papers (total in 18 papers)

Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems

S. V. Matveev, A. T. Fomenko, V. V. Sharko
References:
Abstract: A study is made of the topology of a class of three-dimensional manifolds that arise as constant energy surfaces for integrable systems. It is proved that this class coincides with the class of manifolds admitting a function all of whose critical manifolds are nondegenerate circles and whose nonsingular level surfaces are disjoint unions of tori. Necessary and sufficient conditions are obtained for the existence of minimal round Morse functions on manifolds of dimension greater than five.
Figures: 3.
Bibliography: 20 titles.
Received: 10.07.1986
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1988, Volume 135(177), Number 3, Pages 325–345
Bibliographic databases:
Document Type: Article
UDC: 513.944
MSC: Primary 58F05, 58F07, 57R65; Secondary 70H10
Language: English
Original paper language: Russian
Citation: S. V. Matveev, A. T. Fomenko, V. V. Sharko, “Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems”, Mat. Sb. (N.S.), 135(177):3 (1988), 325–345; Math. USSR-Sb., 63:2 (1989), 319–336
Citation in format AMSBIB
\Bibitem{MatFomSha88}
\by S.~V.~Matveev, A.~T.~Fomenko, V.~V.~Sharko
\paper Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems
\jour Mat. Sb. (N.S.)
\yr 1988
\vol 135(177)
\issue 3
\pages 325--345
\mathnet{http://mi.mathnet.ru/sm1704}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=937644}
\zmath{https://zbmath.org/?q=an:0673.58023}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 63
\issue 2
\pages 319--336
\crossref{https://doi.org/10.1070/SM1989v063n02ABEH003276}
Linking options:
  • https://www.mathnet.ru/eng/sm1704
  • https://doi.org/10.1070/SM1989v063n02ABEH003276
  • https://www.mathnet.ru/eng/sm/v177/i3/p325
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:669
    Russian version PDF:189
    English version PDF:23
    References:76
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024