Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 68, Issue 2, Pages 453–482
DOI: https://doi.org/10.1070/SM1991v068n02ABEH002110
(Mi sm1677)
 

This article is cited in 8 scientific papers (total in 8 papers)

A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space

B. A. Zalesskii, V. V. Sazonov, V. V. Ulyanov
References:
Abstract: Let
$$ S_n=n^{-1/2}\sigma^{-1}\sum_1^n(X_i-\mathbf EX_i),\quad\sigma^2=\mathbf E|X_1-\mathbf EX_1|^2, $$
be the normed sum of independent identically distributed random variables $X_i$ with values in a separable Hilbert space $H$. Denote by $V$ the covariance operator of $X$, and let $Y$ be an $H$-valued $(0,\sigma^{-2}V)$ Gaussian random variable. The authors prove that there exist an absolute constant such that for any $a\in H$ and $r\geqslant0$
$$ |\mathbf P(|S_n-a|<r)-\mathbf P(|Y-a|<r)|\leqslant c\biggl(\prod_1^6\sigma_i^{-1}\biggr)\sigma^3\mathbf E|X_1-\mathbf EX_1|^3(1+|a|^3)n^{-1/2}, $$
where $\sigma_1^2\geqslant\sigma_2^2\geqslant\dotsb$ are the eigenvalues of $V$. Up to the value of $c$, this estimate is unimprovable in general.
Bibliography: 15 titles.
Received: 16.01.1989
Bibliographic databases:
UDC: 519.2
MSC: 60B12, 60F05
Language: English
Original paper language: Russian
Citation: B. A. Zalesskii, V. V. Sazonov, V. V. Ulyanov, “A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space”, Math. USSR-Sb., 68:2 (1991), 453–482
Citation in format AMSBIB
\Bibitem{ZalSazUly89}
\by B.~A.~Zalesskii, V.~V.~Sazonov, V.~V.~Ulyanov
\paper A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space
\jour Math. USSR-Sb.
\yr 1991
\vol 68
\issue 2
\pages 453--482
\mathnet{http://mi.mathnet.ru//eng/sm1677}
\crossref{https://doi.org/10.1070/SM1991v068n02ABEH002110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1038219}
\zmath{https://zbmath.org/?q=an:0694.60004|0709.60006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991FE73700008}
Linking options:
  • https://www.mathnet.ru/eng/sm1677
  • https://doi.org/10.1070/SM1991v068n02ABEH002110
  • https://www.mathnet.ru/eng/sm/v180/i12/p1587
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:373
    Russian version PDF:150
    English version PDF:21
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024