|
This article is cited in 8 scientific papers (total in 8 papers)
A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space
B. A. Zalesskii, V. V. Sazonov, V. V. Ulyanov
Abstract:
Let
$$
S_n=n^{-1/2}\sigma^{-1}\sum_1^n(X_i-\mathbf EX_i),\quad\sigma^2=\mathbf E|X_1-\mathbf EX_1|^2,
$$
be the normed sum of independent identically distributed random variables $X_i$ with values in a separable Hilbert space $H$. Denote by $V$ the covariance operator of $X$, and let $Y$ be an $H$-valued $(0,\sigma^{-2}V)$ Gaussian random variable. The authors prove that there exist an absolute constant such that for any $a\in H$ and $r\geqslant0$
$$
|\mathbf P(|S_n-a|<r)-\mathbf P(|Y-a|<r)|\leqslant c\biggl(\prod_1^6\sigma_i^{-1}\biggr)\sigma^3\mathbf E|X_1-\mathbf EX_1|^3(1+|a|^3)n^{-1/2},
$$
where $\sigma_1^2\geqslant\sigma_2^2\geqslant\dotsb$ are the eigenvalues of $V$. Up to the value of $c$, this estimate is unimprovable in general.
Bibliography: 15 titles.
Received: 16.01.1989
Citation:
B. A. Zalesskii, V. V. Sazonov, V. V. Ulyanov, “A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space”, Math. USSR-Sb., 68:2 (1991), 453–482
Linking options:
https://www.mathnet.ru/eng/sm1677https://doi.org/10.1070/SM1991v068n02ABEH002110 https://www.mathnet.ru/eng/sm/v180/i12/p1587
|
Statistics & downloads: |
Abstract page: | 373 | Russian version PDF: | 150 | English version PDF: | 21 | References: | 48 | First page: | 1 |
|