Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 68, Issue 2, Pages 391–416
DOI: https://doi.org/10.1070/SM1991v068n02ABEH002109
(Mi sm1674)
 

This article is cited in 3 scientific papers (total in 3 papers)

Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization

B. S. Rubin
References:
Abstract: For the operator $M_{t^\alpha}$, $t>0$, $\alpha+n/2\ne0,-1,-2,\dots$, defined on Fourier transforms of Schwartz functions $\omega\in S(\mathbf R^n)$ by the relation
$$ F[M_{t^\alpha}\omega](\xi)=m_\alpha(t|\xi|)F[\omega](\xi),\quad m_\alpha(\rho)=\Gamma\biggl(\frac n2+\alpha\biggr)\biggl(\frac\rho2\biggr)^{1-n/2-\alpha}J_{n/2+\alpha-1}(\rho), $$
the question of extension to a bounded linear operator $\mathscr M_{t^\alpha}\colon L_p^r\to L_q^s$ is considered, where $L_p^r$ and $L_q^s$ are Lebesgue spaces of Bessel potentials, $1\leqslant p\leqslant\infty$, $1\leqslant q\leqslant\infty$, and $-\infty<r<\infty$, $-\infty<s<\infty$. Sharp conditions are obtained under which such an extension is possible. An explicit representation of $\mathscr M_{t^\alpha}f$ is given for $\alpha<0$ and $f\in L_p^r$, $1\leqslant p<\infty$, $r\geqslant0$, in the form of a difference hypersingular integral converging in the $L_q^s$-norm and almost everywhere. For the operator $M_{t^{\alpha,\beta}}$ generated by the Fourier multiplier
$$ \mu_{t,\alpha,\beta}(\xi)=(1+|\xi|^2)^{-\beta/2}m_\alpha(t|\xi|), $$
an assertion is obtained regarding the convergence of $M_{t^{\alpha,\beta}}\varphi$, $\varphi\in L_p$, as $t\to0$ in the $L_q^s$-norm and almost everywhere which generalizes a familiar result of Stein corresponding to the case $\beta=0$. The results are applied to the investigation of the Cauchy problem for the wave equation in the scale of spaces $L_p^r$.
Figures: 4.
Bibliography: 43 titles.
Received: 27.04.1987
Russian version:
Matematicheskii Sbornik, 1989, Volume 180, Number 11, Pages 1524–1547
Bibliographic databases:
UDC: 517.983
MSC: 35L05, 35L15, 42B15
Language: English
Original paper language: Russian
Citation: B. S. Rubin, “Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization”, Mat. Sb., 180:11 (1989), 1524–1547; Math. USSR-Sb., 68:2 (1991), 391–416
Citation in format AMSBIB
\Bibitem{Rub89}
\by B.~S.~Rubin
\paper Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization
\jour Mat. Sb.
\yr 1989
\vol 180
\issue 11
\pages 1524--1547
\mathnet{http://mi.mathnet.ru/sm1674}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1034427}
\zmath{https://zbmath.org/?q=an:0703.35099|0712.35056}
\transl
\jour Math. USSR-Sb.
\yr 1991
\vol 68
\issue 2
\pages 391--416
\crossref{https://doi.org/10.1070/SM1991v068n02ABEH002109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991FE73700005}
Linking options:
  • https://www.mathnet.ru/eng/sm1674
  • https://doi.org/10.1070/SM1991v068n02ABEH002109
  • https://www.mathnet.ru/eng/sm/v180/i11/p1524
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:380
    Russian version PDF:106
    English version PDF:21
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024