Processing math: 100%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 68, Issue 2, Pages 351–389
DOI: https://doi.org/10.1070/SM1991v068n02ABEH001933
(Mi sm1672)
 

This article is cited in 12 scientific papers (total in 12 papers)

On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group

A. V. Pajitnov
References:
Abstract: For manifolds Mn, n6, with free Abelian fundamental group and four-connected universal covering, the author proves the sharpness of Novikov's inequalities for rational cohomology classes ξH1(M,Q) belonging to an open everywhere dense set UH1(M,R).
Figures: 1.
Bibliography: 20 titles.
Received: 23.11.1988
Bibliographic databases:
UDC: 515.164.174
MSC: Primary 58A10; Secondary 57R19
Language: English
Original paper language: Russian
Citation: A. V. Pajitnov, “On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group”, Math. USSR-Sb., 68:2 (1991), 351–389
Citation in format AMSBIB
\Bibitem{Paj89}
\by A.~V.~Pajitnov
\paper On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group
\jour Math. USSR-Sb.
\yr 1991
\vol 68
\issue 2
\pages 351--389
\mathnet{http://mi.mathnet.ru/eng/sm1672}
\crossref{https://doi.org/10.1070/SM1991v068n02ABEH001933}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1034426}
\zmath{https://zbmath.org/?q=an:0686.57019|0708.57013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991FE73700004}
Linking options:
  • https://www.mathnet.ru/eng/sm1672
  • https://doi.org/10.1070/SM1991v068n02ABEH001933
  • https://www.mathnet.ru/eng/sm/v180/i11/p1486
    Erratum
    This publication is cited in the following 12 articles:
    1. Stefan Friedl, Laurentiu Maxim, “Twisted Novikov homology of complex hypersurface complements”, Mathematische Nachrichten, 290:4 (2017), 604  crossref
    2. Tobias Ekholm, Ivan Smith, “Exact Lagrangian immersions with a single double point”, J. Amer. Math. Soc., 29:1 (2015), 1  crossref
    3. Toshitake Kohno, Andrei Pajitnov, “Novikov homology, jump loci and Massey products”, centr.eur.j.math, 12:9 (2014), 1285  crossref  mathscinet  zmath
    4. M. Farber, D. Schütz, “Closed 1-forms in topology and dynamics”, Russian Math. Surveys, 63:6 (2008), 1079–1139  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Dirk Schütz, “On the Whitehead group of Novikov rings associated to irrational homomorphisms”, Journal of Pure and Applied Algebra, 208:2 (2007), 449  crossref  mathscinet  zmath
    6. F. Reese Harvey, Giulio Minervini, “Morse Novikov theory and cohomology with forward supports”, Math Ann, 335:4 (2006), 787  crossref  mathscinet  zmath  isi
    7. St. Petersburg Math. J., 18:5 (2007), 809—835  mathnet  crossref  mathscinet  zmath  elib
    8. Shubin M., “Semiclassical Asymptotics on Covering Manifolds and Morse Inequalities”, Geom. Funct. Anal., 6:2 (1996), 370–409  crossref  mathscinet  zmath  isi
    9. LêHông Vân, Kaoru Ono, “Symplectic fixed points, the Calabi invariant and Novikov homology”, Topology, 34:1 (1995), 155  crossref  mathscinet  zmath
    10. François Latour, “Existence de l-formes fermées non singulières dans une classe de cohomologie de de Rham”, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 80:1 (1994), 135  crossref  mathscinet
    11. Pazhitnov A., “Morse-Theory of Closed 1-Forms”, Lect. Notes Math., 1474 (1991), 98–110  crossref  mathscinet  zmath  isi
    12. A. V. Pajitnov, “Modules over some localizations of the ring of Laurent polynomials”, Math. Notes, 46:5 (1989), 856–862  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:359
    Russian version PDF:105
    English version PDF:27
    References:71
    First page:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025