Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 68, Issue 1, Pages 133–150
DOI: https://doi.org/10.1070/SM1991v068n01ABEH002101
(Mi sm1660)
 

This article is cited in 7 scientific papers (total in 7 papers)

Some properties of the tubular minimal surfaces of arbitrary codimension

V. M. Miklyukov, V. G. Tkachev
References:
Abstract: A tubular surface is an immersion $u\colon M\to\mathbf R^n$ for which the section $\Pi\cap u(M)$ by an arbitrary hyperplane $\Pi$ orthogonal to a fixed vector $e\in\mathbf R^n$ is a compact set.
For tubular minimal surfaces in $\mathbf R^n$ we prove that
(a) if $\dim M=2$ and $u(M)$ lies in a half-space, then $u(M)$ also lies in some hyperplane; and
(b) if $\dim M\geqslant3$, then a tubular minimal surface lies in the layer between two hyperplanes orthogonal to $e$.
We obtain the corresponding results about the structure of the Gaussian image of two-dimensional tubular minimal surfaces.
The case $\operatorname{codim}M=1$ was investigated earlier (RZh.Mat., 1987, 2 B 807).
Bibliography: 19 titles.
Received: 23.05.1988 and 25.08.1988
Bibliographic databases:
UDC: 517.96
MSC: Primary 53A10; Secondary 53A07
Language: English
Original paper language: Russian
Citation: V. M. Miklyukov, V. G. Tkachev, “Some properties of the tubular minimal surfaces of arbitrary codimension”, Math. USSR-Sb., 68:1 (1991), 133–150
Citation in format AMSBIB
\Bibitem{MikTka89}
\by V.~M.~Miklyukov, V.~G.~Tkachev
\paper Some properties of the tubular minimal surfaces of arbitrary codimension
\jour Math. USSR-Sb.
\yr 1991
\vol 68
\issue 1
\pages 133--150
\mathnet{http://mi.mathnet.ru//eng/sm1660}
\crossref{https://doi.org/10.1070/SM1991v068n01ABEH002101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1017825}
\zmath{https://zbmath.org/?q=an:0698.53038|0714.53038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991EX22700007}
Linking options:
  • https://www.mathnet.ru/eng/sm1660
  • https://doi.org/10.1070/SM1991v068n01ABEH002101
  • https://www.mathnet.ru/eng/sm/v180/i9/p1278
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024