Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 67, Issue 2, Pages 595–610
DOI: https://doi.org/10.1070/SM1990v067n02ABEH002100
(Mi sm1653)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Galois group of a multidimensional local field of positive characteristic

O. V. Mel'nikov, A. A. Sharomet
References:
Abstract: Let $K$ be an arbitrary field, Henselian relative to a discrete valuation $v$ of finite rank $n$ with residue field $k$. If $v=v_n\circ v_{n-1}\circ\dots\circ v_1$, where $v_i$ ($i=1,2,\dots,n$) is a discrete valuation of rank $1$, then, setting $K_n=K$, we denote by $K_{i-1}$ the residue field of the valuation $v_i$ of the field $K_i$, where $i=1,2,\dots,n$. A description of the absolute Galois group $\mathfrak G(K)$ of the field $K$, the inertia group $\mathfrak G^0(K)$ and the ramification group $\mathfrak G^1(K)$ of the valuation $v$ are obtained in terms of the absolute Galois group of the field of residues, its action on the roots of unity in the separable closure of the field $k$, and the cardinalities of the fields $K_0=k$ and $K_1,\dots,K_{n-1}$.
Bibliography: 12 titles.
Received: 21.07.1988
Bibliographic databases:
UDC: 512.623
MSC: Primary 11S20; Secondary 11S15, 11S75
Language: English
Original paper language: Russian
Citation: O. V. Mel'nikov, A. A. Sharomet, “The Galois group of a multidimensional local field of positive characteristic”, Math. USSR-Sb., 67:2 (1990), 595–610
Citation in format AMSBIB
\Bibitem{MelSha89}
\by O.~V.~Mel'nikov, A.~A.~Sharomet
\paper The Galois group of a multidimensional local field of positive characteristic
\jour Math. USSR-Sb.
\yr 1990
\vol 67
\issue 2
\pages 595--610
\mathnet{http://mi.mathnet.ru//eng/sm1653}
\crossref{https://doi.org/10.1070/SM1990v067n02ABEH002100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1019485}
\zmath{https://zbmath.org/?q=an:0705.11073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EN23400015}
Linking options:
  • https://www.mathnet.ru/eng/sm1653
  • https://doi.org/10.1070/SM1990v067n02ABEH002100
  • https://www.mathnet.ru/eng/sm/v180/i8/p1132
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025