Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 67, Issue 2, Pages 489–525
DOI: https://doi.org/10.1070/SM1990v067n02ABEH002097
(Mi sm1649)
 

This article is cited in 7 scientific papers (total in 7 papers)

The word problem for solvable Lie algebras and groups

O. G. Kharlampovich
References:
Abstract: The variety of groups $Z\mathfrak N_2\mathfrak A$ is given by the identity
$$ [[x_1,x_2],[x_3,x_4],[x_5,x_6],x_7]=1, $$
and the analogous variety of Lie algebras is given by the identity
$$ (x_1x_2)(x_3x_4)(x_5x_6)x_7=0. $$
Previously the author proved the unsolvability of the word problem for any variety of groups (respectively: Lie algebras) containing $Z\mathfrak N_2\mathfrak A$, and its solvability for any subvariety of $\mathfrak N_2\mathfrak A$. Here the word problem is investigated in varieties of Lie algebras over a field of characteristic zero and in varieties of groups contained in $Z\mathfrak N_2\mathfrak A$. It is proved that in the lattice of subvarieties of $Z\mathfrak N_2\mathfrak A$ there exist arbitrary long chains in which the varieties with solvable and unsolvable word problems alternate. In particular, the variety $Z\mathfrak N_2\mathfrak A\frown\mathfrak N_2\mathfrak N_c$ has a solvable word problem for any $c$, while the variety $\mathfrak Y_2$, given within $Z\mathfrak N_2\mathfrak A$ by the identity
$$ [[x_1,\dots,x_{2c+2}],[y_1,\dots,y_{2c+2}],[z_1,\dots,z_{2c}]]=1 $$
in the case of groups and by the identity
$$ (x_1\dots x_{2c+2})(y_1\dots y_{2c+2})(z_1\dots z_{2c})=0 $$
in the case of Lie algebras, has an unsolvable word problem. It is also proved that in $Z\mathfrak N_2\mathfrak A$ there exists an infinite series of minimal varieties with an unsolvable word problem, i.e. varieties whose proper subvarieties all have solvable word problems.
Bibliography: 17 titles.
Received: 21.03.1988
Russian version:
Matematicheskii Sbornik, 1989, Volume 180, Number 8, Pages 1033–1066
Bibliographic databases:
UDC: 512.54.05
MSC: 20F10, 17B30
Language: English
Original paper language: Russian
Citation: O. G. Kharlampovich, “The word problem for solvable Lie algebras and groups”, Mat. Sb., 180:8 (1989), 1033–1066; Math. USSR-Sb., 67:2 (1990), 489–525
Citation in format AMSBIB
\Bibitem{Kha89}
\by O.~G.~Kharlampovich
\paper The word problem for solvable Lie~algebras and groups
\jour Mat. Sb.
\yr 1989
\vol 180
\issue 8
\pages 1033--1066
\mathnet{http://mi.mathnet.ru/sm1649}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1019480}
\zmath{https://zbmath.org/?q=an:0692.20024|0702.20024}
\transl
\jour Math. USSR-Sb.
\yr 1990
\vol 67
\issue 2
\pages 489--525
\crossref{https://doi.org/10.1070/SM1990v067n02ABEH002097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EN23400010}
Linking options:
  • https://www.mathnet.ru/eng/sm1649
  • https://doi.org/10.1070/SM1990v067n02ABEH002097
  • https://www.mathnet.ru/eng/sm/v180/i8/p1033
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:474
    Russian version PDF:164
    English version PDF:13
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024