Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 67, Issue 1, Pages 249–259
DOI: https://doi.org/10.1070/SM1990v067n01ABEH002087
(Mi sm1635)
 

This article is cited in 5 scientific papers (total in 5 papers)

Locally representable varieties of Lie algebras

M. V. Zaicev
References:
Abstract: A description is obtained for locally representable varieties of Lie algebras, i.e., varieties in which an arbitrary finitely generated algebra has a faithful representation of finite dimension over an extension of the ground field. In the case of an infinite field $\Phi$ a variety $V$ of Lie algebras is locally representable if and only if the following two conditions hold:
1) $zy^nx=\sum\limits_{j=1}^n\alpha_jy^jzy^{n-j}x$ is an identity in $V$ for some $\alpha_1,\dots,\alpha_n$ in $\Phi$; and
2) an arbitrary finitely generated algebra in $V$ lies in a product $N_cN_d$ of nilpotent varieties, where $d=1$ if $\operatorname{char}\Phi=0$.
Bibliography: 13 titles.
Received: 19.01.1988 and 15.09.1988
Russian version:
Matematicheskii Sbornik, 1989, Volume 180, Number 6, Pages 798–808
Bibliographic databases:
UDC: 512
MSC: Primary 17B65, 08B99; Secondary 17B15, 17B30, 17B35, 17B40
Language: English
Original paper language: Russian
Citation: M. V. Zaicev, “Locally representable varieties of Lie algebras”, Mat. Sb., 180:6 (1989), 798–808; Math. USSR-Sb., 67:1 (1990), 249–259
Citation in format AMSBIB
\Bibitem{Zai89}
\by M.~V.~Zaicev
\paper Locally representable varieties of Lie~algebras
\jour Mat. Sb.
\yr 1989
\vol 180
\issue 6
\pages 798--808
\mathnet{http://mi.mathnet.ru/sm1635}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1015041}
\zmath{https://zbmath.org/?q=an:0688.17004|0699.17013}
\transl
\jour Math. USSR-Sb.
\yr 1990
\vol 67
\issue 1
\pages 249--259
\crossref{https://doi.org/10.1070/SM1990v067n01ABEH002087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990ED88000015}
Linking options:
  • https://www.mathnet.ru/eng/sm1635
  • https://doi.org/10.1070/SM1990v067n01ABEH002087
  • https://www.mathnet.ru/eng/sm/v180/i6/p798
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:368
    Russian version PDF:90
    English version PDF:9
    References:73
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024