Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 66, Issue 1, Pages 231–248
DOI: https://doi.org/10.1070/SM1990v066n01ABEH001314
(Mi sm1607)
 

This article is cited in 18 scientific papers (total in 18 papers)

Del Pezzo surfaces with log-terminal singularities

V. V. Nikulin
References:
Abstract: A new method is applied to the study of del Pezzo surfaces ZZ with log-terminal singularities, taken from the theory of reflection groups in Lobachevsky space. This method yields bounds on the Picard number ρ(Y)ρ(Y) of a minimal resolution YY of singularities of ZZ, assuming that the indices or the multiplicities of the singularities of ZZ are bounded, and under an extra (conjecturally inessential) condition of generality on the singularities of ZZ.
Bibliography: 25 titles.
Received: 12.01.1988
Bibliographic databases:
Document Type: Article
UDC: 512.744
MSC: Primary 14J26; Secondary 14J05, 14J17, 14J25, 14E30, 51F15, 05C99
Language: English
Original paper language: Russian
Citation: V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities”, Math. USSR-Sb., 66:1 (1990), 231–248
Citation in format AMSBIB
\Bibitem{Nik89}
\by V.~V.~Nikulin
\paper Del Pezzo surfaces with log-terminal singularities
\jour Math. USSR-Sb.
\yr 1990
\vol 66
\issue 1
\pages 231--248
\mathnet{http://mi.mathnet.ru/eng/sm1607}
\crossref{https://doi.org/10.1070/SM1990v066n01ABEH001314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=993456}
\zmath{https://zbmath.org/?q=an:0704.14030|0674.14024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990DK06800013}
Linking options:
  • https://www.mathnet.ru/eng/sm1607
  • https://doi.org/10.1070/SM1990v066n01ABEH001314
  • https://www.mathnet.ru/eng/sm/v180/i2/p226
    Cycle of papers
    This publication is cited in the following 18 articles:
    1. José Cogolludo-Agustín, Tamás László, Jorge Martín-Morales, András Némethi, Contemporary Mathematics, 778, 𝑝-Adic Analysis, Arithmetic and Singularities, 2022, 231  crossref
    2. Dimitrios I. Dais, “Toric log del Pezzo surfaces with one singularity”, Advances in Geometry, 20:1 (2020), 121  crossref
    3. Hideo Kojima, Takeshi Takahashi, “Normal del Pezzo surfaces of rank one with log canonical singularities”, Journal of Algebra, 360 (2012), 53  crossref  mathscinet  zmath
    4. G. D. Noce, “On the Picard Number of Singular Fano Varieties”, International Mathematics Research Notices, 2012  crossref  mathscinet
    5. Kasprzyk A.M., Kreuzer M., Nill B., “On the Combinatorial Classification of Toric Log Del Pezzo Surfaces”, LMS J. Comput. Math., 13 (2010), 33–46  crossref  mathscinet  zmath  isi
    6. Dais D.I., “Classification of Toric Log Del Pezzo Surfaces Having Picard Number 1 and Index <= 3”, Results Math., 54:3-4 (2009), 219–252  crossref  mathscinet  zmath  isi
    7. Okada T., “On the Birational Unboundedness of Higher Dimensional Q-Fano Varieties”, Math. Ann., 345:1 (2009), 195–212  crossref  mathscinet  zmath  isi
    8. Lin, JY, “Birational unboundedness of Q-Fano threefolds”, International Mathematics Research Notices, 2003, no. 6, 301  crossref  mathscinet  zmath  isi
    9. Yu. G. Prokhorov, V. V. Shokurov, “The first main theorem on complements: from global to local”, Izv. Math., 65:6 (2001), 1169–1196  mathnet  crossref  crossref  mathscinet  zmath  elib
    10. D.-Q. ZHANG, “Quotients of K3 surfaces modulo involutions”, Jpn. j. math, 24:2 (1998), 335  crossref
    11. Nikulin V., “Basis of the Diagram Method for Generalized Reflection Groups in Lobachevsky Spaces and Algebraic Surfaces with Nef Anticanonical Class”, Int. J. Math., 7:1 (1996), 71–108  crossref  mathscinet  zmath  isi
    12. R. Blache, “Riemann-Roch theorem for normal surfaces and applications”, Abh Math Semin Univ Hambg, 65:1 (1995), 307  crossref  mathscinet  zmath
    13. R. Blache, “Two aspects of log terminal surface singularities”, Abh Math Semin Univ Hambg, 64:1 (1994), 59  crossref  mathscinet  zmath
    14. Nikulin V., “On the Picard Number of Fano 3-Folds with Terminal Singularities”, J. Math. Kyoto Univ., 34:3 (1994), 495–529  crossref  mathscinet  zmath  isi
    15. V. V. Nikulin, “Algebraic three-folds and the diagram method”, Math. USSR-Izv., 37:1 (1991), 157–189  mathnet  crossref  mathscinet  zmath  adsnasa
    16. V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities. III”, Math. USSR-Izv., 35:3 (1990), 657–675  mathnet  crossref  mathscinet  zmath
    17. V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities. II”, Math. USSR-Izv., 33:2 (1989), 355–372  mathnet  crossref  mathscinet  zmath
    18. V. A. Alexeev, “Fractional indices of log Del Pezzo surfaces”, Math. USSR-Izv., 33:3 (1989), 613–629  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:589
    Russian version PDF:143
    English version PDF:29
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025