Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 66, Issue 1, Pages 41–58
DOI: https://doi.org/10.1070/SM1990v066n01ABEH002080
(Mi sm1597)
 

This article is cited in 11 scientific papers (total in 12 papers)

On infinite curves on the Klein bottle

D. V. Anosov
References:
Abstract: The author investigates continuous nonselfintersecting (semi-) infinite curves $L=\{z(t);t\geqslant0\}$ on the Klein bottle $\mathbf R^2/\Gamma$, where the group $\Gamma$ of covering transformations is generated by translations through elements of the integral lattice together with the transformation $(x,y)\mapsto(x+\frac12,-y)$. It is proved that if $\widetilde L=\{\widetilde z(t)\}\subset\mathbf R^2$ is a curve which covers $L$ and goes to infinity, then $\widetilde L$ has a horizontal or vertical asymptotic direction $\widetilde l$ at infinity; that is, a ray starting at a fixed point of $\mathbf R^2$ and passing through $\widetilde z(t)$ has a horizontal or vertical limit as $t\to\infty$. In the first case (when $\widetilde l$ is horizontal) the divergence of $\widetilde L$ from $\widetilde l$ is bounded, but in the second case it can be unbounded on one side (but not on both). In passing, a simplified description is given of an example (published earlier in Trudy Mat. Inst. Steklov. 185 (1988), 30–35) demonstrating the existence of the analogous phenomenon of unbounded divergence for the torus.
Bibliography: 8 titles.
Received: 17.05.1988
Bibliographic databases:
Document Type: Article
UDC: 517.91
MSC: Primary 58F25; Secondary 34C35, 34C40
Language: English
Original paper language: Russian
Citation: D. V. Anosov, “On infinite curves on the Klein bottle”, Math. USSR-Sb., 66:1 (1990), 41–58
Citation in format AMSBIB
\Bibitem{Ano89}
\by D.~V.~Anosov
\paper On infinite curves on the Klein bottle
\jour Math. USSR-Sb.
\yr 1990
\vol 66
\issue 1
\pages 41--58
\mathnet{http://mi.mathnet.ru//eng/sm1597}
\crossref{https://doi.org/10.1070/SM1990v066n01ABEH002080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=988845}
\zmath{https://zbmath.org/?q=an:0692.58026|0676.58044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990DK06800002}
Linking options:
  • https://www.mathnet.ru/eng/sm1597
  • https://doi.org/10.1070/SM1990v066n01ABEH002080
  • https://www.mathnet.ru/eng/sm/v180/i1/p39
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024