Abstract:
Let sequence {λn}, 0<λn↑∞, satisfies to a condition of Levinson type. It is obtained exact estimate of growth of the Dirichlet series
f(z)=∑∞n=1aneλnz on the curve of bounded slope, depending only on its coefficients and exponents.
Citation:
A. M. Gaisin, “Properties of series of exponentials whose exponents satisfy to
a condition of Levinson type”, Sb. Math., 197:6 (2006), 813–833
\Bibitem{Gai06}
\by A.~M.~Gaisin
\paper Properties of series of exponentials whose exponents satisfy to
a condition of Levinson type
\jour Sb. Math.
\yr 2006
\vol 197
\issue 6
\pages 813--833
\mathnet{http://mi.mathnet.ru/eng/sm1569}
\crossref{https://doi.org/10.1070/SM2006v197n06ABEH003779}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2477280}
\zmath{https://zbmath.org/?q=an:1151.30021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240354900007}
\elib{https://elibrary.ru/item.asp?id=17309846}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748875623}
Linking options:
https://www.mathnet.ru/eng/sm1569
https://doi.org/10.1070/SM2006v197n06ABEH003779
https://www.mathnet.ru/eng/sm/v197/i6/p25
This publication is cited in the following 5 articles:
A. M. Gaisin, G. A. Gaisina, “Utochnenie teorem tipa Makintaira — Evgrafova”, Chelyab. fiz.-matem. zhurn., 8:3 (2023), 309–318
N. N. Aitkuzhina, A. M. Gaisin, R. A. Gaisin, “Regular growth of Dirichlet series of the class $D(\Phi)$ on curves of bounded $K$-slope”, Probl. anal. Issues Anal., 12(30):3 (2023), 3–19
N. N. Aitkuzhina, A. M. Gaisin, R. A. Gaisin, “Behavior of entire Dirichlet series of class $\underline{D}(\Phi)$ on curves of bounded $K$-slope”, Ufa Math. J., 15:3 (2023), 3–12
A. M. Gaisin, G. A. Gaisina, “Estimate for growth and decay of functions in Macintyre–Evgrafov kind theorems”, Ufa Math. J., 9:3 (2017), 26–36
A. M. Gaisin, I. G. Kinzyabulatov, “A Levinson-Sjöberg type theorem. Applications”, Sb. Math., 199:7 (2008), 985–1007