Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 3, Pages 387–414
DOI: https://doi.org/10.1070/SM2006v197n03ABEH003763
(Mi sm1536)
 

This article is cited in 5 scientific papers (total in 5 papers)

Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities

I. A. Cheltsov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Shokurov's vanishing theorem is used for the proof of the $\mathbb Q$-factoriality of the following nodal threefolds: a complete intersection of hypersurfaces $F$ and $G$ in $\mathbb P^5$ of degrees $n$ and $k$, $n\geqslant k$, such that $G$ is smooth and $|{\operatorname{Sing}(F\cap G)}|\leqslant(n+k-2)(n-1)/5$; a double cover of a smooth hypersurface $F\subset\mathbb P^4$ of degree $n$ branched over the surface cut on $F$ by a hypersurface $G\subset\mathbb P^4$ of degree $2r\geqslant n$, provided that $|{\operatorname{Sing}(F\cap G)}|\leqslant(2r+n-2)r/4$.
Bibliography: 71 titles.
Received: 08.02.2005
Bibliographic databases:
UDC: 512.76
MSC: 14J17, 14J30
Language: English
Original paper language: Russian
Citation: I. A. Cheltsov, “Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities”, Sb. Math., 197:3 (2006), 387–414
Citation in format AMSBIB
\Bibitem{Che06}
\by I.~A.~Cheltsov
\paper Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities
\jour Sb. Math.
\yr 2006
\vol 197
\issue 3
\pages 387--414
\mathnet{http://mi.mathnet.ru//eng/sm1536}
\crossref{https://doi.org/10.1070/SM2006v197n03ABEH003763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264336}
\zmath{https://zbmath.org/?q=an:1134.14309}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239727500005}
\elib{https://elibrary.ru/item.asp?id=9188979}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747051779}
Linking options:
  • https://www.mathnet.ru/eng/sm1536
  • https://doi.org/10.1070/SM2006v197n03ABEH003763
  • https://www.mathnet.ru/eng/sm/v197/i3/p87
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:502
    Russian version PDF:211
    English version PDF:18
    References:74
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024