Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 1, Pages 55–96
DOI: https://doi.org/10.1070/SM2007v198n01ABEH003829
(Mi sm1519)
 

This article is cited in 8 scientific papers (total in 8 papers)

Uniqueness classes for solutions in unbounded domains of the first mixed problem for the equation $u_t=Au$ with quasi-elliptic operator $A$

L. M. Kozhevnikova

Sterlitamak State Pedagogical Institute
References:
Abstract: In a cylindrical domain $D^T=(0,T)\times\Omega$, where $\Omega$ is an unbounded subdomain of $\mathbb R_{n+1}$, one considers the evolution equation $u_t=Lu$ the right-hand side of which is a quasi-elliptic operator with highest derivatives of orders $2k,2m_1,\dots,2m_n$ with respect to the variables $y_0,y_1,\dots,y_n$. For the mixed problem with Dirichlet condition at the lateral part of the boundary of $D^T$ a uniqueness class of the Täcklind type is described.
For domains $\Omega$ tapering at infinity another uniqueness class is distinguished, a geometric one, which is broader than the Täcklind-type class. It is shown that for domains with irregular behaviour of the boundary this class is wider than the one described for a second-order parabolic equation by Oleǐnik and Iosif'yan (Uspekhi Mat. Nauk, 1976 [17]). In a wide class of tapering domains non-uniqueness examples for solutions of the first mixed problem for the heat equation are constructed, which supports the exactness of the geometric uniqueness class.
Bibliography: 33 titles.
Received: 30.01.2006 and 31.08.2006
Russian version:
Matematicheskii Sbornik, 2007, Volume 198, Number 1, Pages 59–102
DOI: https://doi.org/10.4213/sm1519
Bibliographic databases:
UDC: 517.956.4
MSC: 35K60
Language: English
Original paper language: Russian
Citation: L. M. Kozhevnikova, “Uniqueness classes for solutions in unbounded domains of the first mixed problem for the equation $u_t=Au$ with quasi-elliptic operator $A$”, Mat. Sb., 198:1 (2007), 59–102; Sb. Math., 198:1 (2007), 55–96
Citation in format AMSBIB
\Bibitem{Koz07}
\by L.~M.~Kozhevnikova
\paper Uniqueness classes for solutions in unbounded domains of the first mixed problem for the
equation $u_t=Au$ with quasi-elliptic operator~$A$
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 1
\pages 59--102
\mathnet{http://mi.mathnet.ru/sm1519}
\crossref{https://doi.org/10.4213/sm1519}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2330686}
\zmath{https://zbmath.org/?q=an:1148.35036}
\elib{https://elibrary.ru/item.asp?id=9450880}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 1
\pages 55--96
\crossref{https://doi.org/10.1070/SM2007v198n01ABEH003829}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246564600004}
\elib{https://elibrary.ru/item.asp?id=18099603}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249934795}
Linking options:
  • https://www.mathnet.ru/eng/sm1519
  • https://doi.org/10.1070/SM2007v198n01ABEH003829
  • https://www.mathnet.ru/eng/sm/v198/i1/p59
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:727
    Russian version PDF:261
    English version PDF:17
    References:84
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024