Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 2, Pages 139–152
DOI: https://doi.org/10.1070/SM2006v197n02ABEH003750
(Mi sm1507)
 

This article is cited in 1 scientific paper (total in 1 paper)

Families of submanifolds of constant negative curvature of many-dimensional Euclidean space

Yu. A. Aminov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
References:
Abstract: A family of $n$-dimensional submanifolds of constant negative curvature $K_0$ of the $(2n-1)$-dimensional Euclidean space $E^{2n-1}$ is considered and included in an orthogonal system of coordinates. For $n=2$ such a system of coordinates was considered by Bianchi. The concept of a many-dimensional Bianchi system of coordinates is introduced. The following result is central in the paper.
Theorem 1. {\it Assume that a ball of radius $\rho$ in the Euclidean space $E^{2n-1}$ carries a regular Bianchi system of coordinates such that $K_0\leqslant -1$. Then}
$$ \rho\leqslant\frac\pi4\,. $$

Bibliography: 12 titles.
Received: 11.01.2005
Bibliographic databases:
UDC: 514
MSC: Primary 53A05, 53B25; Secondary 53C21
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “Families of submanifolds of constant negative curvature of many-dimensional Euclidean space”, Sb. Math., 197:2 (2006), 139–152
Citation in format AMSBIB
\Bibitem{Ami06}
\by Yu.~A.~Aminov
\paper Families of submanifolds of constant negative curvature of many-dimensional Euclidean space
\jour Sb. Math.
\yr 2006
\vol 197
\issue 2
\pages 139--152
\mathnet{http://mi.mathnet.ru//eng/sm1507}
\crossref{https://doi.org/10.1070/SM2006v197n02ABEH003750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2230087}
\zmath{https://zbmath.org/?q=an:1172.53004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237780600008}
\elib{https://elibrary.ru/item.asp?id=9200268}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744769383}
Linking options:
  • https://www.mathnet.ru/eng/sm1507
  • https://doi.org/10.1070/SM2006v197n02ABEH003750
  • https://www.mathnet.ru/eng/sm/v197/i2/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024