Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 2, Pages 171–206
DOI: https://doi.org/10.1070/SM2007v198n02ABEH003833
(Mi sm1503)
 

This article is cited in 2 scientific papers (total in 2 papers)

Duality and calculus of convex objects (theory and applications)

J. Brinkhuisa, V. M. Tikhomirovb

a Erasmus University, Econometric Institute
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A new approach to convex calculus is presented, which allows one to treat from a single point of view duality and calculus for various convex objects. This approach is based on the possibility of associating with each convex object (a convex set or a convex function) a certain convex cone without loss of information about the object. From the duality theorem for cones duality theorems for other convex objects are deduced as consequences. The theme ‘Duality formulae and the calculus of convex objects’ is exhausted (from a certain precisely formulated point of view).
Bibliography: 5 titles.
Received: 20.01.2006 and 15.09.2006
Russian version:
Matematicheskii Sbornik, 2007, Volume 198, Number 2, Pages 29–66
DOI: https://doi.org/10.4213/sm1503
Bibliographic databases:
UDC: 517
MSC: Primary 52Axx; Secondary 46A55, 90C05
Language: English
Original paper language: Russian
Citation: J. Brinkhuis, V. M. Tikhomirov, “Duality and calculus of convex objects (theory and applications)”, Mat. Sb., 198:2 (2007), 29–66; Sb. Math., 198:2 (2007), 171–206
Citation in format AMSBIB
\Bibitem{BriTik07}
\by J.~Brinkhuis, V.~M.~Tikhomirov
\paper Duality and calculus of convex objects (theory and
applications)
\jour Mat. Sb.
\yr 2007
\vol 198
\issue 2
\pages 29--66
\mathnet{http://mi.mathnet.ru/sm1503}
\crossref{https://doi.org/10.4213/sm1503}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355441}
\zmath{https://zbmath.org/?q=an:1157.52007}
\elib{https://elibrary.ru/item.asp?id=9469174}
\transl
\jour Sb. Math.
\yr 2007
\vol 198
\issue 2
\pages 171--206
\crossref{https://doi.org/10.1070/SM2007v198n02ABEH003833}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246564600008}
\elib{https://elibrary.ru/item.asp?id=18099594}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249890247}
Linking options:
  • https://www.mathnet.ru/eng/sm1503
  • https://doi.org/10.1070/SM2007v198n02ABEH003833
  • https://www.mathnet.ru/eng/sm/v198/i2/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:880
    Russian version PDF:588
    English version PDF:28
    References:98
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024