Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 12, Pages 1723–1751
DOI: https://doi.org/10.1070/SM2006v197n12ABEH003820
(Mi sm1502)
 

This article is cited in 17 scientific papers (total in 17 papers)

Discontinuous gradient differential equations and trajectories in calculus of variations

I. A. Bogaevsky

M. V. Lomonosov Moscow State University
References:
Received: 19.01.2006
Bibliographic databases:
UDC: 517.911.5
MSC: Primary 34A12, 49J15; Secondary 26B25, 26B05
Language: English
Original paper language: Russian
Citation: I. A. Bogaevsky, “Discontinuous gradient differential equations and trajectories in calculus of variations”, Sb. Math., 197:12 (2006), 1723–1751
Citation in format AMSBIB
\Bibitem{Bog06}
\by I.~A.~Bogaevsky
\paper Discontinuous gradient differential equations and trajectories in calculus of variations
\jour Sb. Math.
\yr 2006
\vol 197
\issue 12
\pages 1723--1751
\mathnet{http://mi.mathnet.ru/eng/sm1502}
\crossref{https://doi.org/10.1070/SM2006v197n12ABEH003820}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2437079}
\zmath{https://zbmath.org/?q=an:1168.34302}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245209100009}
\elib{https://elibrary.ru/item.asp?id=9433168}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34147111319}
Linking options:
  • https://www.mathnet.ru/eng/sm1502
  • https://doi.org/10.1070/SM2006v197n12ABEH003820
  • https://www.mathnet.ru/eng/sm/v197/i12/p11
  • This publication is cited in the following 17 articles:
    1. E. E. Borisenko, “Motion of two touching cylinders interacting by a dry friction force”, Moscow University Mechanics Bulletin, 78:2 (2023), 42–53  mathnet  crossref  crossref  elib
    2. Cannarsa P., Cheng W., “Singularities of Solutions of Hamilton-Jacobi Equations”, Milan J. Math., 89:1 (2021), 187–215  crossref  mathscinet  isi
    3. Aptekarev A.I., Rykov Yu.G., “Detailed Description of the Evolution Mechanism For Singularities in the System of Pressureless Gas Dynamics”, Dokl. Math., 99:1 (2019), 79–82  mathnet  crossref  mathscinet  zmath  isi
    4. Fedorov A.K., Ovseevich A.I., “Asymptotic Control Theory For a Closed String”, Russ. J. Math. Phys., 25:2 (2018), 200–219  crossref  mathscinet  zmath  isi
    5. S. V. Zakharov, “Asymptotic solution of the multidimensional Burgers equation near a singularity”, Theoret. and Math. Phys., 196:1 (2018), 976–982  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Aleksey Fedorov, Alexander Ovseevich, “Asymptotic control theory for a system of linear oscillators”, Mosc. Math. J., 16:3 (2016), 561–598  mathnet  crossref  mathscinet
    7. A. I. Ovseevich, A. K. Fedorov, “Motion of a system of oscillators under the generalized dry friction control”, Autom. Remote Control, 76:5 (2015), 826–833  mathnet  crossref  isi  elib  elib
    8. A. I. Ovseevich, A. K. Fedorov, “Damping of a system of linear oscillators using the generalized dry friction”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 156–165  mathnet  crossref  mathscinet  isi  elib
    9. Konstantin Khanin, Andrei Sobolevski, “On Dynamics of Lagrangian Trajectories for Hamilton–Jacobi Equations”, Arch Rational Mech Anal, 2015  crossref  mathscinet
    10. Thomas Strömberg, Farzaneh Ahmadzadeh, “Excess action and broken characteristics for Hamilton–Jacobi equations”, Nonlinear Analysis: Theory, Methods & Applications, 110 (2014), 113  crossref  mathscinet  zmath  scopus
    11. Thomas Strömberg, “Propagation of singularities along broken characteristics”, Nonlinear Analysis: Theory, Methods & Applications, 85 (2013), 93  crossref  mathscinet  zmath  isi  scopus
    12. Patrick Valageas, Takahiro Nishimichi, Atsushi Taruya, “Matter power spectrum from a Lagrangian-space regularization of perturbation theory”, Phys. Rev. D, 87:8 (2013)  crossref  zmath  isi
    13. S. N. Gurbatov, A. I. Saichev, S. F. Shandarin, “Large-scale structure of the Universe. The Zeldovich approximation and the adhesion model”, Phys. Usp., 55:3 (2012), 223–249  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    14. Valageas P., Bernardeau F., “Density fields and halo mass functions in the geometrical adhesion toy model”, Phys. Rev. D, 83:4 (2011), 043508, 30 pp.  crossref  mathscinet  adsnasa  isi  elib  scopus
    15. Khanin K., “Particle Dynamics Inside Shocks in Hamilton–Jacobi Equations”, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols a-C, AIP Conference Proceedings, 1389, ed. Simos T., Amer Inst Physics, 2011  crossref  mathscinet  isi
    16. Khanin K., Sobolevski A., “Particle dynamics inside shocks in Hamilton–Jacobi equations”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368:1916 (2010), 1579–1593  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. Bernardeau F., Valageas P., “Merging and fragmentation in the Burgers dynamics”, Phys. Rev. E, 82:1 (2010), 016311, 20 pp.  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:836
    Russian version PDF:473
    English version PDF:46
    References:86
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025