Typesetting math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 8, Pages 1109–1147
DOI: https://doi.org/10.1070/SM1996v187n08ABEH000150
(Mi sm150)
 

This article is cited in 63 scientific papers (total in 63 papers)

Connectedness and homogenization. Examples of fractal conductivity

V. V. Zhikov

Vladimir State Pedagogical University
References:
Abstract: A detailed study of the concept of p-connectedness is carried out; in particular, a criterion for the p-connectedness of two disjoint domains with Lipschitz boundaries and with fractal contact is formulated. New examples of open periodic sets with positive effective conductivity are constructed on the basis of this analysis. A new class of objects, elliptic operators in a Euclidean space with measure, is introduced; the corresponding concept of p-connectedness is introduced and a generalized theory of homogenization is developed.
Received: 27.09.1995
Bibliographic databases:
UDC: 517.9
MSC: Primary 35B27, 28A75; Secondary 28A80
Language: English
Original paper language: Russian
Citation: V. V. Zhikov, “Connectedness and homogenization. Examples of fractal conductivity”, Sb. Math., 187:8 (1996), 1109–1147
Citation in format AMSBIB
\Bibitem{Zhi96}
\by V.~V.~Zhikov
\paper Connectedness and homogenization. Examples of fractal conductivity
\jour Sb. Math.
\yr 1996
\vol 187
\issue 8
\pages 1109--1147
\mathnet{http://mi.mathnet.ru/eng/sm150}
\crossref{https://doi.org/10.1070/SM1996v187n08ABEH000150}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1418340}
\zmath{https://zbmath.org/?q=an:0874.35011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VW99300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030305554}
Linking options:
  • https://www.mathnet.ru/eng/sm150
  • https://doi.org/10.1070/SM1996v187n08ABEH000150
  • https://www.mathnet.ru/eng/sm/v187/i8/p3
  • This publication is cited in the following 63 articles:
    1. A. K. Nandakumaran, Abu Sufian, “High Contrasting Diffusion in Heisenberg Group: Homogenization of Optimal Control via Unfolding”, SIAM J. Control Optim., 61:3 (2023), 1350  crossref
    2. Braides A. Piat V.Ch., “Homogenization of Networks in Domains With Oscillating Boundaries”, Appl. Anal., 98:1-2, SI (2019), 45–63  crossref  mathscinet  zmath  isi  scopus
    3. Chiarini A. Mathieu P., “Singular Weighted Sobolev Spaces and Diffusion Processes: An Example (Due to Vv Zhikov)”, Appl. Anal., 98:1-2, SI (2019), 430–457  crossref  mathscinet  zmath  isi  scopus
    4. S. I. Markov, N. B. Itkina, “Mnogomasshtabnoe modelirovanie protsessa prosachivaniya odnofaznogo flyuida v poristykh sredakh”, Sib. elektron. matem. izv., 15 (2018), 115–134  mathnet  crossref
    5. N. S. Dairbekov, O. M. Penkin, L. O. Sarybekova, “The Poincaré inequality and p-connectedness of a stratified set”, Siberian Math. J., 59:6 (2018), 1024–1033  mathnet  crossref  crossref  isi  elib  elib
    6. S. E. Pastukhova, “On Sobolev Inequalities on Singular and Combined Structures”, J Math Sci, 232:4 (2018), 539  crossref
    7. Zhikov V.V. Pastukhova S.E., “Bloch principle for elliptic differential operators with periodic coefficients”, Russ. J. Math. Phys., 23:2 (2016), 257–277  crossref  mathscinet  zmath  isi  scopus
    8. Kogut P.I., Manzo R., Putchenko A.O., “On approximate solutions to the Neumann elliptic boundary value problem with non-linearity of exponential type”, Bound. Value Probl., 2016, 208  crossref  mathscinet  zmath  isi  scopus
    9. Hafsa O.A. Mandallena J.-Ph., “On the Relaxation of Variational Integrals in Metric Sobolev Spaces”, Adv. Calc. Var., 8:1 (2015), 69–91  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    10. Briane M. Casado-Diaz J., “Homogenization of Convex Functionals Which Are Weakly Coercive and Not Equi-Bounded From Above”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 30:4 (2013), 547–571  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    11. D. Cioranescu, A. Damlamian, P. Donato, G. Griso, R. Zaki, “The Periodic Unfolding Method in Domains with Holes”, SIAM J. Math. Anal, 44:2 (2012), 718  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    12. Moussa A.A., Zlaiji L., “Dimension Reduction and Homogenization of Random Degenerate Operators. Part I”, LMS J. Comput. Math., 15 (2012), 1–22  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    13. T. A. Mel’nik, O. A. Sivak, “Asymptotic analysis of a parabolic semilinear problem with nonlinear boundary multiphase interactions in a perforated domain”, J Math Sci, 164:3 (2010), 427  crossref  mathscinet  zmath  scopus  scopus  scopus
    14. A. M. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, J. Math. Sci. (N. Y.), 163:2 (2009), 111–150  mathnet  crossref  mathscinet  zmath  elib
    15. Mel'nyk, TA, “Asymptotic analysis of a boundary-value problem with nonlinear multiphase boundary interactions in a perforated domain”, Ukrainian Mathematical Journal, 61:4 (2009), 592  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    16. V. V. Shumilova, “O printsipe kompaktnosti v peremennom prostranstve Lp dlya periodicheskikh struktur”, Sib. elektron. matem. izv., 6 (2009), 526–532  mathnet  mathscinet  elib
    17. Biroli M., “Gamma-CONVERGENCE FOR STRONGLY LOCAL Dirichlet FORMS IN OPEN SETS WITH HOLES”, Potential Theory and Stochastics in Albac: Aurel Cornea Memorial Volume, Conference Proceedings, 2009, 35–47  mathscinet  isi
    18. V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerate elliptic equations”, Siberian Math. J., 49:1 (2008), 80–101  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    19. A. M. Meirmanov, “Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity”, Sb. Math., 199:3 (2008), 361–384  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    20. A. M. Meirmanov, “Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lamé Equations”, Proc. Steklov Inst. Math., 261 (2008), 204–213  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1344
    Russian version PDF:440
    English version PDF:48
    References:107
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025