Abstract:
A detailed study of the concept of p-connectedness is carried out; in particular, a criterion for the p-connectedness of two disjoint domains with Lipschitz boundaries and with fractal contact is formulated. New examples of open periodic sets with positive effective conductivity are constructed on the basis of this analysis. A new class of objects, elliptic operators in a Euclidean space with measure, is introduced; the corresponding concept of p-connectedness is introduced and a generalized theory of homogenization is developed.
\Bibitem{Zhi96}
\by V.~V.~Zhikov
\paper Connectedness and homogenization. Examples of fractal conductivity
\jour Sb. Math.
\yr 1996
\vol 187
\issue 8
\pages 1109--1147
\mathnet{http://mi.mathnet.ru/eng/sm150}
\crossref{https://doi.org/10.1070/SM1996v187n08ABEH000150}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1418340}
\zmath{https://zbmath.org/?q=an:0874.35011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VW99300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030305554}
Linking options:
https://www.mathnet.ru/eng/sm150
https://doi.org/10.1070/SM1996v187n08ABEH000150
https://www.mathnet.ru/eng/sm/v187/i8/p3
This publication is cited in the following 63 articles:
A. K. Nandakumaran, Abu Sufian, “High Contrasting Diffusion in Heisenberg Group: Homogenization of Optimal Control via Unfolding”, SIAM J. Control Optim., 61:3 (2023), 1350
Braides A. Piat V.Ch., “Homogenization of Networks in Domains With Oscillating Boundaries”, Appl. Anal., 98:1-2, SI (2019), 45–63
Chiarini A. Mathieu P., “Singular Weighted Sobolev Spaces and Diffusion Processes: An Example (Due to Vv Zhikov)”, Appl. Anal., 98:1-2, SI (2019), 430–457
S. I. Markov, N. B. Itkina, “Mnogomasshtabnoe modelirovanie protsessa prosachivaniya odnofaznogo flyuida v poristykh sredakh”, Sib. elektron. matem. izv., 15 (2018), 115–134
N. S. Dairbekov, O. M. Penkin, L. O. Sarybekova, “The Poincaré inequality and p-connectedness of a stratified set”, Siberian Math. J., 59:6 (2018), 1024–1033
S. E. Pastukhova, “On Sobolev Inequalities on Singular and Combined Structures”, J Math Sci, 232:4 (2018), 539
Zhikov V.V. Pastukhova S.E., “Bloch principle for elliptic differential operators with periodic coefficients”, Russ. J. Math. Phys., 23:2 (2016), 257–277
Kogut P.I., Manzo R., Putchenko A.O., “On approximate solutions to the Neumann elliptic boundary value problem with non-linearity of exponential type”, Bound. Value Probl., 2016, 208
Hafsa O.A. Mandallena J.-Ph., “On the Relaxation of Variational Integrals in Metric Sobolev Spaces”, Adv. Calc. Var., 8:1 (2015), 69–91
Briane M. Casado-Diaz J., “Homogenization of Convex Functionals Which Are Weakly Coercive and Not Equi-Bounded From Above”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 30:4 (2013), 547–571
D. Cioranescu, A. Damlamian, P. Donato, G. Griso, R. Zaki, “The Periodic Unfolding Method in Domains with Holes”, SIAM J. Math. Anal, 44:2 (2012), 718
Moussa A.A., Zlaiji L., “Dimension Reduction and Homogenization of Random Degenerate Operators. Part I”, LMS J. Comput. Math., 15 (2012), 1–22
T. A. Mel’nik, O. A. Sivak, “Asymptotic analysis of a parabolic semilinear problem with nonlinear boundary multiphase interactions in a perforated domain”, J Math Sci, 164:3 (2010), 427
A. M. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, J. Math. Sci. (N. Y.), 163:2 (2009), 111–150
Mel'nyk, TA, “Asymptotic analysis of a boundary-value problem with nonlinear multiphase boundary interactions in a perforated domain”, Ukrainian Mathematical Journal, 61:4 (2009), 592
V. V. Shumilova, “O printsipe kompaktnosti v peremennom prostranstve Lp dlya periodicheskikh struktur”, Sib. elektron. matem. izv., 6 (2009), 526–532
Biroli M., “Gamma-CONVERGENCE FOR STRONGLY LOCAL Dirichlet FORMS IN OPEN SETS WITH HOLES”, Potential Theory and Stochastics in Albac: Aurel Cornea Memorial Volume, Conference Proceedings, 2009, 35–47
V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerate elliptic equations”, Siberian Math. J., 49:1 (2008), 80–101
A. M. Meirmanov, “Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity”, Sb. Math., 199:3 (2008), 361–384
A. M. Meirmanov, “Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lamé Equations”, Proc. Steklov Inst. Math., 261 (2008), 204–213