Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 8, Pages 1145–1165
DOI: https://doi.org/10.1070/SM2006v197n08ABEH003792
(Mi sm1488)
 

This article is cited in 30 scientific papers (total in 30 papers)

Schur flows and orthogonal polynomials on the unit circle

L. B. Golinskii

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
References:
Abstract: Connections between Toda lattices (Toda chains) and similar non-linear chains and the theory of orthogonal polynomials on the real axis have been studied in detail during the last decades. Another system of difference differential equations, known as the Schur flow, is considered in this paper in the framework of the theory of orthogonal polynomials on the unit circle. A Lax pair for this system is found and the dynamics of the corresponding spectral measure is described. The general result is illustrated by an example of Bessel modified measures on the unit circle: the large-time asymptotic behaviour of their reflection coefficients is determined.
Bibliography: 23 titles.
Received: 29.12.2005
Bibliographic databases:
UDC: 517.53+517.91
MSC: 37K10, 33C47
Language: English
Original paper language: Russian
Citation: L. B. Golinskii, “Schur flows and orthogonal polynomials on the unit circle”, Sb. Math., 197:8 (2006), 1145–1165
Citation in format AMSBIB
\Bibitem{Gol06}
\by L.~B.~Golinskii
\paper Schur flows and orthogonal polynomials on the unit circle
\jour Sb. Math.
\yr 2006
\vol 197
\issue 8
\pages 1145--1165
\mathnet{http://mi.mathnet.ru//eng/sm1488}
\crossref{https://doi.org/10.1070/SM2006v197n08ABEH003792}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2272777}
\zmath{https://zbmath.org/?q=an:1140.37019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241860100009}
\elib{https://elibrary.ru/item.asp?id=9277045}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751057414}
Linking options:
  • https://www.mathnet.ru/eng/sm1488
  • https://doi.org/10.1070/SM2006v197n08ABEH003792
  • https://www.mathnet.ru/eng/sm/v197/i8/p41
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:521
    Russian version PDF:227
    English version PDF:22
    References:55
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024