Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 3, Pages 299–342
DOI: https://doi.org/10.1070/SM2007v198n03ABEH003838
(Mi sm1476)
 

This article is cited in 10 scientific papers (total in 10 papers)

Axiomatic method of partitions in the theory of Nöbeling spaces. I. Improvement of partition connectivity

S. M. Ageev

Belarusian State University, Faculty of Mathematics and Mechanics
References:
Abstract: The Nöbeling space $N_k^{2k+1}$, a $k$-dimensional analogue of the Hilbert space, is considered; this is a topologically complete separable (that is, Polish) $k$-dimensional absolute extensor in dimension $k$ (that is, $\mathrm{AE}(k)$) and a strongly $k$-universal space. The conjecture that the above-listed properties characterize the Nöbeling space $N_k^{2k+1}$ in an arbitrary finite dimension $k$ is proved. In the first part of the paper a full axiom system of the Nöbeling spaces is presented and the problem of the improvement of a partition connectivity is solved on its basis.
Bibliography: 29 titles.
Received: 09.12.2005 and 29.11.2006
Bibliographic databases:
UDC: 515.124.62+515.125
MSC: Primary 55P15, 54F45, 54F65; Secondary 54C55
Language: English
Original paper language: Russian
Citation: S. M. Ageev, “Axiomatic method of partitions in the theory of Nöbeling spaces. I. Improvement of partition connectivity”, Sb. Math., 198:3 (2007), 299–342
Citation in format AMSBIB
\Bibitem{Age07}
\by S.~M.~Ageev
\paper Axiomatic method of partitions in the theory
of N\"obeling spaces.
I.~Improvement of partition connectivity
\jour Sb. Math.
\yr 2007
\vol 198
\issue 3
\pages 299--342
\mathnet{http://mi.mathnet.ru//eng/sm1476}
\crossref{https://doi.org/10.1070/SM2007v198n03ABEH003838}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354278}
\zmath{https://zbmath.org/?q=an:1147.54019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247946700001}
\elib{https://elibrary.ru/item.asp?id=9469179}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547851566}
Linking options:
  • https://www.mathnet.ru/eng/sm1476
  • https://doi.org/10.1070/SM2007v198n03ABEH003838
  • https://www.mathnet.ru/eng/sm/v198/i3/p3
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024