Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1993, Volume 75, Issue 2, Pages 491–505
DOI: https://doi.org/10.1070/SM1993v075n02ABEH003395
(Mi sm1461)
 

This article is cited in 10 scientific papers (total in 10 papers)

Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence

E. N. Selivanova
References:
Abstract: The basic results of the theory of A. T. Fomenko on the topological properties of integrable Hamiltonian systems with two degrees of freedom are used to obtain the topological classification of geodesic flows on the torus $T^2$ with a Bott integral that is quadratic in the impulses, to state a criterion for a system to be a Bott system in terms of the function of the metric on $T^2$, to explicitly calculate the Fomenko invariant $W$ (an untagged molecule) and the Fomenko–Zieschang invariant $W^*$ (atagged molecule), and to completely describe the place occupied by the systems under consideration in the molecular table of complexity.
Received: 17.12.1990
Bibliographic databases:
MSC: Primary 58F17; Secondary 58F05, 58F07, 53C12
Language: English
Original paper language: Russian
Citation: E. N. Selivanova, “Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 491–505
Citation in format AMSBIB
\Bibitem{Sel92}
\by E.~N.~Selivanova
\paper Classification of geodesic flows of Liouville metrics on the two-dimensional torus up to topological equivalence
\jour Russian Acad. Sci. Sb. Math.
\yr 1993
\vol 75
\issue 2
\pages 491--505
\mathnet{http://mi.mathnet.ru//eng/sm1461}
\crossref{https://doi.org/10.1070/SM1993v075n02ABEH003395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1183398}
\zmath{https://zbmath.org/?q=an:0782.58041|0769.58048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..75..491S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LT65700010}
Linking options:
  • https://www.mathnet.ru/eng/sm1461
  • https://doi.org/10.1070/SM1993v075n02ABEH003395
  • https://www.mathnet.ru/eng/sm/v183/i4/p69
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024